QL DISK INTERFACES - A GENERAL GUIDE

Adding a floppy disk interface is one of the best starting points for expanding the original 128K Sinclair QL computer. Floppy disks let you store and load your programs from a medium which is both faster, more reliable and has higher capacity than the original tape loop microdrive cartridges.

Over the years, many disk systems have been produced for the QL and although most are no longer in production, many are available as second-user hardware from QL traders and small adverts in computer magazines and via the web.

Many second-user interfaces come without manuals, sadly. This manual is an attempt to provide a ‘general’ manual which will be of help where a second-hand interface has been obtained minus a manual.

No two QL disk interfaces seem to have been the same - some have more facilities than others, some have system extensions on board based on those found in Tony Tebby’s Toolkit 2, some have additional memory on board, some may have a parallel printer port and one or two may also have a mouse interface (e.g. the Sandy SuperQBoard). Please note that the Trump Card, Gold Card and Super Gold Card expansion units from Miracle Systems are quite different from older interfaces and you should use their specific manuals. This manual should be used only as a very general replacement manual for older disk interfaces. The system extensions described in this manual generally apply to most interfaces using the QJUMP standard for floppy disk interfaces.

1.0 Floppy Disk Drives

In general, most QL disk interfaces can use 3 inch, 3.5 inch or 5.25 inch disk drives, which may be either single or double sided, 40 or 80 track. Older disk interfaces can generally only handle drives of up to double density (DD). Only a few more recent interfaces (e.g. the Miracle Systems Super Gold Card) can handle High Density (HD) and Extra High Density (ED) disk drives and disks.

Drives originally produced for the BBC micro are generally suitable, as they are electrically compatible and have the same cable connector. The 34-pin connector is designed to be Shugart compatible and the pin connections are detailed as below:

 0V -- 1 2 --

 0V -- 3 4 --

 0V -- 5 6 -- drive select 4

 0V -- 7 8 -- index

 0V -- 9 10 -- drive select 1

 0V -- 11 12 -- drive select 2

 0V -- 13 14 -- drive select 3

 0V -- 15 16 -- load head

 0V -- 17 18 -- direction

 0V -- 19 20 -- step

 0V -- 21 22 -- write data

 0V -- 23 24 -- write enable

 0V -- 25 26 -- track 0

 0V -- 27 28 -- write protected

 0V -- 29 30 -- read data

 0V -- 31 32 -- select side

 0V -- 33 34 --

The pin numbers of the 34-pin IDC (Insulation Displacement Connector) connector, looking into the unit, are assigned as below:

 33 3 1

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 34 4 2

Disk interface cards plug into the expansion slot on the left hand side of the QL. Installation is fairly straightforward, and must be done with the equipment DISCONNECTED from the mains. Never add or remove an interface card to or from a QL with the power turned on as serious damage may result to the QL or the interface card may result if powered while connecting or disconnecting.

QL disk interface cards generally take the form of a circuit board roughly the same depth as the QL circuit board, with an edge connector on the right hand side to match that inside the QL, and most have a black plastic cover over the left hand half of the disk interface card as shown in the diagram in Figure 1 – this protects the part of the disk interface which protrudes from the expansion slot of the QL (one notable exception being the Silicon Express interface which is one of the few small enough to fit completely inside the QL.)

[image: image1.png]
Figure 1 – Diagram of a typical QL disk interface

Expansion cards plug into a 64-way (male) DIN 41612 edge connector located a few centimetres inside the QL, at the left hand edge of the computer’s circuit board. Details of the pin connections for this edge connector are contained in the ‘Peripheral Expansion’ pages of the ‘Concepts’ section of the QL User Guide. The user does not need to know about the signals concerned, but the information may prove useful to advanced users.

At one end of the disk interface there will be a 34-way connector. This is used to connect the signal cable from the disk drive to the disk interface.

Remove the plastic cover from the expansion slot on the QL by pulling the clip away from the computer – see Figure 2. On some QLs, this cover may be a tight fit and require some effort to remove.

[image: image2.png]

Figure 2 – QL expansion slot cover

Align the disk interface with the expansion slot and push the interface card firmly home. The components on the board should be face up, and it should slide in under retaining slots on the QL. You should be able to feel when the card has engaged firmly in place and be able to confirm that it is seated in a level position. See Figure 3. Most disk interfaces do not need any support when the QL is used at a sloping typing angle with its small plastic feet, as the interface is usually well supported by the body of the QL. Be careful not to bend any pins on the edge connector – if you manage to bend one, straighten it out very carefully to its original position with the aid of a small screwdriver blade, for example.

[image: image3.png]
Figure 3 – Plugging a disk interface into the QL

Do not switch the power on yet. Next, you need to attach the ribbon cable from the disk drive to the connector on the end of the disk interface. The connector will generally have a small notch on it to help ensure it can only be attached in the correct way. Most interfaces have latches on the ends of the connector which help to lock the connector in place to prevent it coming loose while in use.

Note: Do not attempt to force the cable socket into the connector on the interface. If the socket refuses to go in, check for possible bent pins in the connector or incorrect orientation of the socket.

Figure 4 shows the appearance of a system with a typical disk interface connected.

[image: image4.png]
Figure 4 – Disk interface connected to a QL

Most QL disk interfaces allow up to 2 disk drives to be connected. A few will allow up to 4 drives, although a separate adaptor card may be needed to allow the third and fourth drives to be connected (e.g. as with the Gold Card interface from Miracle Systems Ltd).

Having connected the disk interface and disk drives, you are now ready to switch on and start using the system.

IMPORTANT - POWER-UP AS FOLLOWS:

EITHER:

(a) First connect the QL to the mains supply and then connect the

 disk drives to the power source (without a floppy disk in any

 of the drives)

OR:

(b) Apply power to QL and Disk Drives simultaneously by means of

 a multi-way mains power block.

If you do not follow this sequence for connecting the power then damage may be caused to the QL and the disk units

Do not put a floppy disk in the drive(s) at this stage. After the memory test screen you should see the usual TV/Monitor selection screen with a message identifying the disk system:

XYZ Disk Interface V n.nn (C) 1984

If such a message does not appear, check that you have correctly installed the disk interface and the disk drives as outlined above. If neither of these cures the fault contact your supplier for advice.

If the message appears and TV/Monitor selection works normally then your QL and disk drives are ready for use.

1.1 Removing the Disk Interface

If you need to remove the Disk Drive(s) and Interface for any reason, first DISCONNECT THE QL FROM THE MAINS and the disk drive(s) from their power source, if you fail to do this you may damage your QL and disk interface unit. Then reverse the above procedure for installation. Unplug the cable from the disk drive(s) to the disk interface and gently pull the disk interface unit fom the expansion slot on the QL. (Put it in its original packing for safe keeping). Lastly, replace the cover on the expansion slot of the QL - this may again need some pressure.

1.2 Care And Use Of Floppy Disks

Floppy disks are constructed from a thin piece of plastic sheet, treated with a magnetic compound which allows the storage and retrieval of data to and from the disk. When the disk is placed in the disk drives it is spun at high speed, in order to read or write information on to the disk the disk drive has a read/write head. This head moves in and out along the large round cut out on the disk jacket, (in the centre of the disk.) The head actually rests on the surface of the disk as it spins inside the jacket and reads or writes data to or from the disk. Obviously a Disk Drive is a sophisticated piece of equipment and should be treated with a certain amount of respect.

Great care should be taken when handling disks:

* Always insert the disks into the drives carefully and the correct

 way round

* Do not bend or fold the disks

* Do not touch any of the exposed areas of the disk

* Do not allow smoke or other contaminants to come into contact with

 the surface of the disk

* Never switch the power to the disk drive or the QL on or off whilst

 a disk is actually in a drive (this may damage the disk with

 certain drives)

* Always store 5.25” disks in the protective envelopes supplied with

 them

To prevent losing important programs and data by either loss or damage to a disk or by accidental erasure of data from a disk, you are strongly advised to make "backup" copies of all important disks. A backup of a disk is simply an exact copy where all the data on one disk has been copied onto another, then two copies of the disk exist. You can make backups of disks by using the COPY command, this is explained below.

2.0 Simple Use of the Disk Interface

In all of the examples in this section and (following ones) you are invited to type a command followed by the appropriate syntax, for example:

DIR flp1_

After typing the text you must press the enter key for the command to work (An explanation of the DIR command is given below).

Note: In general you will find that floppy disk use is very similar to using microdrives because of the QL's device independent I/O. As a general rule, anywhere mdv (microdrive) is used as part of the syntax of a command you may use flp to denote floppy disk drive(s)

2.1 FORMATTING a Disk

Before a disk can be used to store data, it first has to be formatted by the disk system. This process divides the disk into tracks and sectors so that any files (data or programs) you store on the disk are automatically stored in an orderly fashion and can easily be retrieved by the computer at a later date.

To format a disk, put a disk in drive 1 (the top drive on most systems), type the following and press the enter key

FORMAT flp1_xxx

In this example flp1 is Disk Drive 1 and xxx is the disk name which can be up to ten characters long. You may wish to give your disks names such as "Documents" or "Letters" so that you can easily identify the kind of information held on a disk without having to look at the files.

After you have typed in the above line and pressed the enter key the disk drive will make a "whirring" noise as it formats the disk. The following will be displayed on the screen when the formatting operation has been completed:

1440/1440

(On disk systems capable of formatting HD or ED disks, the message may be 2880/2880 for HD disks, or 6400/6400 for ED disks).

The two sets of digits displayed on the screen refer to the number of useful sectors and total sectors on the disk respectively. These digits will vary depending on the storage capacity of the disk.

Important Note: If you FORMAT a disk with data already on it, all the data on the disk will be deleted. Use this command with care!

2.2 The DIR command

The DIR (DIRECTORY) command will display a list of all the files held on a disk (except on a newly formatted disk where no files already exist). For example:

DIR flp1_

will display a list of the files on the disk in disk drive 1.

The DIR command will display the information on the screen in the following way.

Disk_Name

free/available sectors

filename1

filename2

...

disk name i.e. The name you have allocated to the disk.

free sectors i.e. The number of free sectors on the Disk.

available sectors i.e. The number of sectors on the Disk.

file name(s) i.e. A list of the files on the Disk.

2.3 The LOAD command

You use the LOAD command to take a Basic file from the disk and load it into the memory in the computer

LOAD flp1_xxx

In this example flp1 is Disk Drive 1 and xxx is the name of the file that you wish to load into the computer. Filenames can be up to 36 characters long and can be any character on the keyboard. As with disk names it is useful to give names to your files that describe the type of data that is held in them.

2.4 The SAVE command

The SAVE command is used to save Basic programs to the specific disk drive:

SAVE flp1_xxx

will save the file xxx to the disk in Drive 1

You can SAVE all of a file or just specific parts of it if you wish, for example:

SAVE flp1_xxx;20 TO 70

will save lines 20 to 70 in the file called xxx to the disk in drive 1. You can also SAVE from a specified line number to the end of the program as follows:

SAVE_flp1_xxx;20 TO

will SAVE from line 20 to the end of the file.

2.5 The COPY command

The COPY command is used to COPY files from one disk drive to another or copy files from a microdrive to a disk drive. (Use this command for making backup copies of disks). For example:

COPY mdv1_xxx TO flp1_xxx

will copy the file xxx from Microdrive 1 to Disk Drive 1

Or

COPY flp1_xxx TO flp2_xxx

will COPY the file xxx from the disk in drive 1 to the disk in drive 2.

2.6 Using the Disk Interface from PSION programs

The Disk Interface works with the PSION supplied packages. The later versions of the packages have an option in the install program to change the default channel from MDV1. This is described in the manual supplied with the packages.

2.7 Naming the Disk Device Driver

The on-board device driver in the disk interface is treated in the same way as other device drivers on the QL. The way this driver is named determines how data for output to the disk is handled. The syntax of a <disk device> is as follows

flp Drive_xxx (e.g. flp1_xxx)

where

Drive is either drive 1 or 2.

XXX is the filename.

2.8 Numbering Channels

The syntax of <channel> in Super Basic is #n, where n is an integer. Channels 0, 1 and 2 are used by the screen, so should not be used for the disk interface. To save memory, channel numbers should be kept as low as possible, since the QL allocates memory for all channels up to the highest number one used i.e.

open #5000,flp#_xxx

attempts to reserve a total of 5000 channels from memory.

2.9 DELETE

The DELETE command will erase a file from the directory of the disk in the drive specified, for example:

DELETE flp1_xxx

will delete the file xxx from the disk in Drive 1

2.10 LBYTES

This command is used to load a data file from disk into the memory in the computer at a specified start address (i.e. memory location) for example:

LBYTES flp1_xxx,65536

will take the file xxx on the disk in drive 1 and load it at memory location 65536

2.11 MERGE

MERGE will load a file from the specified disk drive and interpret it as a SuperBASIC program. If the new file contains a line number which doesn't appear in the program then the line will be added. If the new file contains a replacement line for one that already exists then the line will be replaced. All other old program lines are unaffected.

For example:

MERGE flp1_xxx

will take the file xxx on the Disk in Disk Drive 1 and load it into the computer as a SuperBASIC program.

Note: If a line input during a MERGE does not contain the correct SuperBasic syntax, the word MISTAKE is inserted between the line number and the body of the line. A line with a mistake in it will generate an error.

2.12 OPEN

With the OPEN command you can link a logical channel to a physical QL device such as a disk drive.

If the channel is linked to a disk drive then the disk file can either be an existing file or a new file OPEN_IN will open an already existing disk file for input and OPEN_NEW will create a new disk file for output.

OPEN #9,"flp1_xxx"

will open channel 9 to drive 1 with filename xxx

2.13 SBYTES

SBYTES allows specific areas of the QL memory to be saved to disk. The start address and the length (in bytes) must be specified. For example:

SBYTES flp1_xxx, 131072, 32768

will save 32768 bytes of memory from start address 131072 to the disk in drive 1 as the file xxx. In this example the contents of the screen (on a QL with original 512x256 pixel layout) would be saved to disk).

3.0 Making a Backup

Because diskettes are exposed to every day environments there is a chance that one will get damaged or corrupted. It is therefore advisable to ensure you have a copy of all your important files.

In order that you may do this, a command has been supplied which can make a complete physical backup copy of all files on any diskette you choose.

The command line is as follows:-

WCOPY FLP1_ to FLP2_ <ENTER>

(Important: there should be spaces between WCOPY and FLP1_, and a space either side of the ‘to’ separator)

This will copy the entire contents of the disk in drive 1 to a formatted disk in drive 2.

3.1 Transferring software from cartridge to disk.

(Example PSION Program QUILL)

(1) Insert the Quill cartridge into Microdrive 1 (mdvl)

 Insert a formatted disk into Disk Drive 1 (flp1)

(2) Type WCOPY MDVl_ TO FLPl_ and enter. Microdrive 1 and disk

 drive 1 should now run briefly.

 You will see displayed mdvl_clone TO flpl_clone..Y/N/A/Q?

 Now type A (for ‘All’) to copy this file and all the rest.

 Each file will be displayed as it is copied.

 When complete you will see the flashing cursor.

You will now have a copy of QUILL on disk, if you type CLS and enter, DIR flpl and enter, you will see this verified on the screen. Because the disk file BOOT is an exact copy of the Microdrive file, the computer will still be looking for mdv.

Before loading the program type FLP_USE MDV and press ENTER.

To load and run the program type LRUN MDV1_BOOT and enter

The command FLP_USE can be entered after you first switch on the computer, it will then remain valid until you switch off.

Note: See Chapter 4 for full explanation of the FLP_USE command.

3.2 Auto-boot

If there is a disk in drive 1 when the QL is turned on (this may be risky with some makes of floppy disk drive, particularly those with permanently loaded heads) or reset (this should be safe with all drives), then the QL will boot from the disk in drive 1, otherwise the QL will boot from Microdrive 1 as usual. The action of booting actually LRUNs a file called BOOT on flp1 or mdv1.

There is no direct control over the disk drive motor, the motor is turned off by the hardware in the interface after 10 disk rotations. To stop the motor, insert a disk into drive 1.

When a "directory device", such as a floppy disk, is accessed for the first time, QDOS will allocate a block of memory for the device. In the case of a floppy disk, the Sinclair standard format requires a block of memory about 1.6 kilobytes long. This is rather larger than the Microdrive block which is only about 0.6 kilobytes long. The auto-boot procedure used ensures that if there is no disk in drive 1 when the QL is reset, then the 1.6 kilobyte block for disk drive 1 will not be allocated. Programs that are too large to execute when floppy disks are being used, should still execute from microdrives.

3.3 Directories and Level 2 Filing System
Most QL disk interfaces use what is generally referred to as a ‘level 1’ filing system – there are no facilities to create and use sub-directories as such. The Toolkit 2 extensions do provide ‘soft’ directories or pseudo-directories, but interfaces such as Gold Card and Super Gold Card (and Trump Card where fitted with a ROM upgrade to provide ‘hard directories) add the MAKE_DIR command to create sub-directories.

3.3.1 The MAKE_DIR Command

The command MAKE_DIR takes one parameter: the subdirectory filename. As it can return a variety of errors there is also a function to do the same operation: FMAKE_DIR which returns the error code or 0.

 MAKE_DIR filename or ferr=FMAKE_DIR (filename)

Normal Error Codes

 - 7 not found Medium or drive is not available

 - 8 already exists Already directory/file of that name

 - 9 in use Already directory/file of that name

 -15 bad parameter Device can not handle subdirectories

If there are any files which, by virtue of their names, would belong in the directory being made, then these files will be transfered to the new directory, even if they are open. For example:

 MAKE_DIR "FLP2_letters" or MAKE DIR "FLP2_letters"

followed by

 DIR FLP2_

would show in its output the file "letters ->". The "->" signifying

that "letters" is a subdirectory. Copying a file to "FLP2_letters_bankmanager" would create a new file in the "letters_"

subdirectory and

 DIR FLP2_letters_

would now show one file: "letters_bankmanager".

To remove a subdirectory, firstly delete its contents then delete the

subdirectory itself. COPY and WCOPY deal only with files at the

specified directory level. Subdirectories can also be applied to RAM

disks. Please note that subdirectories should not be put on disks that are to be used with a TRUMP CARD or other system not supporting level 2 filing systems – such interfaces would not understand the disk and may either be unable to access files on the disk or may damage the files on the disk if attempts are made to write to the disk.

3.3.2 Extra Filing System Facilities on Level 2 Systems
Note: These facilities are only available on later systems such as Gold Card from Miracle Systems Ltd.

Reading the dates and the version number.

Whenever a file which has been modified is closed the file is marked with the date and time when it was closed. This is called the update date. It is calculated in seconds from the beginning of 1961. The extended filing system also maintains a file version number which is incremented when a modified file is closed. There is also a facility to set a "backup" date in a file header to record the most recent backup copy of the file.

There are two new functions to complement the Toolkit II function FUPDT. All three return a floating point value. They can be used to find the update date, the backup date and the version number of a file which has already been opened. If the channel number is not specified it will default to #3. Also they can be used to open a file, find the date or version and close the file. In this case, the filename should be specified but preceded with the \ character. The filename can be given as a string or a name and will default to use the data default directory. Examples are:

PRINT FUPDT Print update date of file on #3

value=FUPDT(#5) Get file update date for file already

 open on #5

value=FUPDT(\fred)

 or

value=FUPDT(\"fred") Get file update date for fred in the

 data default directory

value=FBKDT(#5) Get file backup date for file already

 open on #5

value=FBKDT(\"fred") Get file backup date for fred

value=FVERS(#5) Get version number for file already open

 on #5

value=FVERS(\"fred") Get version number for fred

Setting the dates and version number: There are three procedures

to set the update date, the backup date and the version number of a

file. Like the three functions for reading the dates and version

number, they can be used with either a channel number (default #3) or a filename, preceded by \. The filename can be a name or a string and

uses the data default directory.

A date or version number of 0 will have the same effect as omitting it. A date or version number of -1 will have no effect on the file. If the update date has been set it will not be reset when the file is closed. If the version number has been set it will not be incremented when the file is closed. Examples of use of SET_FUPDT, SET_FBKDT and SET_VERS:

SET FUPDT #5 Set update date to now

SET_FUPDT \flp1_fred,DATE-24*60*60 Set update date of "fred" on

 flp1_ to 24 hours ago

SET_FUPDT \flp1_fred Set existing update date to now

SET_FBKDT #channel Set backup date to now

SET_FBKDT \filename

SET_FBKDT #channel,date Set backup date to date

SET_FBKDT \filename,date

Version numbers can be manipulated using:

SET_FVERS #5 Do not increment version number of file

 open on #5

SET_FVERS #5,1 Set version number of file on #5 to 1

SET_FVERS \flp1_fred,2 Force version number to 2

3.4 Direct Sector Read/Write

Some interfaces include a facility known as Direct Sector Read/Write, or Direct Sector Access. Older interfaces may lack this facility.

The software includes provision for reading sectors of a disk using direct addressing. To do this a special file is opened on the disk. The name is

FLP1_*Dsd where s is the sector length 0 = 128 bytes

 1 = 256 bytes

 2 = 512 bytes

 3 = 1024 bytes

 and d is the density S = single (FM)

 D = double (MFM)

When this file is open, no other file may be open on the drive, The only IO calls supported for this type of file are IO.FSTRG, IO.SSTRG IO.POSAB and IO.POSRE, to read or write complete sectors or to set the position. The parameter (Dl) to the POSRE call is ignored, but the current position is returned. Reading or writing a sector does not change the file position.

If the attempt to read or write a sector fails, D0 will be returned as a standard error message pointer (read/write failed).

The position is a composite of the required sector, side and track:

sector number + side * 256 + track * 65536

To ensure compatibility with string IO the length specified in the SSTRG and FSTRG calls may be one of three values:

sector length the complete sector is read or written

2 returns the sector length (IO.FSTRG)

 ignored (IO.SSTRG)

2 + sector len. returns the sector length followed by

 the sector (IO.FSTRG)

 skips the first two bytes, and writes

 the rest to the sector (IO,SSTRG)

This variety enables sectors to be read and written in SuperBASIC using the normal string IO in the QL Toolkit, as well as by assembler programs. For example, sector 1 of side 1 on track 2 may be read into the string A$ using the following command:

GET #n \1+256+2*65536, a$

When using the direct sector read/write calls for a 40 track disc in an 80 track drive, the track number should be doubled. Seek errors will not be detected. If a read/write error is returned from a direct sector read/write call, then it will be safest to make another call to read from track zero. Calls to read from or write to track zero will cause a 'restore' rather than a seek, and will thus reset the

drive to a known state.

3.5 Direct Sector Read/Write on Systems Supporting HD and ED Drives

The disk controllers on the Gold Card and Super Gold Card support high density (HD) and extra high density (ED) disk drives. Consequently, the software has been extended to support direct sector read/write with these disk densities.

To directly access the sectors on an HD diskette use the file name

 FLPn_*D2h where n is the drive number

ED diskettes formatted under QDOS use the file name

 FLPn_*D4e

The 4 indicates that the sectors are 2048 bytes long.

If direct sector read/write is performed from SuperBasic the file names above must be enclosed in quotes. E.g. with Toolkit II enabled and an ED diskette in FLP2_

 OPEN #3,"flp2_*d4e"

 GET #3 \1+0*256+0*2^l6, Sector$

will read the first sector of side 0, track 0 on the diskette into the variable Sector$. Note that INPUT #3, Sector$ is unsuitable as there may be CHR$(10)s anywhere in the sector causing some of the data to be missed. The first four characters of Sector$ should be QL5B. The next ten characters are the name of the diskette as shown with DIR FLP2_

Following the two program lines above with the three below illustrates how to change the name of a diskette.

 Sector$(5 TO 14)= "CustomName" : REM The desired name

 PUT #3 \1+0*256+0*2^16, Sector$

 CLOSE #3

For more about direct sector read/write see the relevant section of the Toolkit II manual.

3.6 THE DEV DEVICE

DEV is a generalised default device and is a fudge to enable existing

software, such as Quill, Archive, Abacus and Easel to make use of

subdirectories. It is not intended as an excuse to write bad software. The DEV device is only built into interfaces such as Trump Card and Gold Card from Miracle Systems Ltd.

As usual, there are up to 8 DEV devices; DEV1 to DEV8. Each DEV device is attached to a particular real device or a particular default directory on a real device. Files on a DEV device can be opened, used, and deleted in the same way as on a real device. Note that DEV definitions are global.

Each DEV is attached to a device by the DEV_USE command.

 DEV_USE DevNumber, RealDirectory

An example of DEV_USE with QUILL: The following description assumes a version of QUILL configured to take its files from mdv1_ and mdv2_. Floppy disk users with a copy of QUILL reconfigured to access flp should replace occurrences of mdv with flp.

Place the original copy of QUILL in mdv1_ and, after having pressed F1 or F2, put the floppy diskette on which the program is to run in flp1 and enter these lines of BASIC.

 TK2_EXT

 MAKE_DIR flp1_quill

 MAKE_DIR flpl_quill_data

 WCOPY mdv1_ TO flp1_quill_ : REM Press A to copy all

Now enter the following BASIC program.

 100 INPUT "which dir [flp1_quill_data_]?'!DataSource$

 105 IF DataSource$="" : DataSource$="flp1_quill_data"

 110 DEV_USE 1,FLP1_quill_

 120 DEV_USE 2,DataSource$

 130 DEV_USE mdv

 140 EXEC_W mdv1_quill

 150 DEV_USE : REM Clear the DEV setting after quitting

 SAVE flp1_quill_boot : REM Key Y to overwrite old boot

In future QUILL can be run by entering: "LRUN flp1_quill_boot"

Files will then load from the specified directory. The subdirectory in which the QUILL _doc files are to be found is first requested. If ENTER is pressed the program assumes files are located in a subdirectory called DATA_ in the QUILL_ subdirectory. Otherwise enter the name of the device followed, optionally, by the subdirectory holding the files.

The same process can be employed with Archive, Abacus and Easel as there is plenty of space even on a double density diskette for all four programs. The fact that they are in different subdirectories means they can all have their own PRINTER_DAT.

Running INSTALL BAS using DEV: INSTALL_BAS was written with Microdrives in mind but the listing given below shows how this can be circumvented. Assuming you have just copied the contents of the QUILL Microdrive to flpl quill, enter this:

 NEW : REM Clear out the old program

 100 DEV_USE 1,flp1_quill_

 11O DEV_USE 2,flp1_quill_

 120 DEV_USE mdv

 130 LRUN mdv1_install_bas

 SAVE flp1_quill_install_boot

Now the original INSTALL_BAS program can be used to change the

PRINTER_DAT file by entering: "LRUN flp1_quill install boot" but don't forget that the DEV_USE settings will still be in force when the program finishes.

DEV in more detail: The DEV driver is also usable from SuperBasic. However, this is not something we recommend. It is easy to get confused about the settings; if in doubt don’t use DEV.

 DEV_USE 1, ram1_ dev1_ equivalent to ram1_

 DEV_USE 2, flp1_letters_ dev2_ is flp1_letters_

 DEV_USE 3, winl_work_new dev3_ is win1_work_new

NOTE: unlike PROG_USE and DATA_USE, the underscore at the end is significant. Thus, after entering the above commands

 OPEN #3, dev1_f1 Opens ram1_f1

 OPEN #3, dev2_bankmanager Opens flp1_letters_bankmanager

 OPEN #3, dev3_f1 Opens win _work_newf1

 DELETE dev3_junk Deletes win1_work_newjunk

There is a variation on the DEV_USE call which enables the setting up

of default chains. If you put another number at the end of the DEV_USE command it will be taken as the DEV to try if the open fails. This next DEV can also chain to another DEV. The DEV driver stops chaining when all DEVs in the chain have been tried.

 DEV_USE 1,ram1_,2 dev1_ is equivalent to ram1_

 DEV_USE 2,flp1_latest_,3 dev2_ is flp1_latest

 DEV USE 3,win1_work_,1 dev3_ is equivalent to win1_work_

 LOAD dev1_Prog_bas Tries ram1_Prog then

 flp1_latest_Prog_bas

 then finally win1_work_Prog bas

 LOAD dev2_DiskCheck Tries flp1_latest_DiskCheck_bas

 then win1_work_DiskCheck and

 finally ram1_DiskCheck

DELETE does not chain with DEV.

Examining DEV settings: The command DEV_LIST and two functions DEV_USE$ and DEV_NEXT$ can be used to examine the DEV allocations.

 DEV_LIST Lists current DEVs in #1

 DEV_LIST #2 Lists current DEVs in #2

 PRINT DEV_USE$(3) Prints the usage for dev3_

 PRINT DEV_NEXT(1) Prints the next DEV in the chain

 after dev1_

Interaction between DATA_USE, PROG_USE and DEV: If you are going to use the DEV defaults, it makes sense to set the DATA_USE and PROG_USE defaults to use DEV, and when moving from directory to change the DEV definition rather than the DATA_USE.

 DATA_USE dev1_ Current directory is dev1_

 DEV_USE 1,flp2_myprogs_ which is myprogs on drive 2

 PROG_USE dev2_ Programs from dev2_

 DEV_USE 2,flp1_ex_,1 which is flp1_ex_ or flp2_myprogs_

Changing the DEV name: The DEV name can be changed by specifying a three letter name or string. DEV_USE with no parameter resets the name to DEV.

 DEV_USE 1,flp2_myprogs_ dev1 is myprogs_ on drive 2

 DEV_USE 2,flp1_ex_,1 dev2 is flp1_ex_ or flp2_myprogs_

 DEV_USE flp flp1_ is now really flp2 myprogs

 And flp2_ is flp1_ex_ etc.

 DEV_USE flp1_ is now flp1_ again

Using DEV_USE in this way is at best confusing. Take time to experiment with DEVs. Only incorporate it once you really understand its purpose and operation.

DEV operates by intercepting the QDOS open call and redirecting the open to the appropriate device driver. It produces very little overhead on an open call and thereafter the real device driver is accessed directly by QDOS. There are no spurious channels opened. Unlike some defaulting schemes, it does not prohibit access to directories which are not the default. Thus it is usable without affecting the computer's normal operation.

4. ADDITIONAL COMMANDS AND EXTENSIONS

Many disk interfaces come with an on-board ROM or EPROM containing system and BASIC extensions, such as those you may be familiar with in Tony Tebby’s Super Toolkit 2 system. Some interfaces include the full range of Toolkit 2 extensions (e.g. the Trump Card and Gold Card), while others include only a small subset (e.g. early CST Q-Disk interfaces) – you can use the EXTRAS command described below to list BASIC extensions available on your QL system. The following text describes the most commonly used extensions for most QL disk interface systems. For systems such as Trump Card or Gold Card featuring the complete range of Toolkit 2 extensions, refer instead to the Toolkit 2 manual.
Some interfaces require you to enter a particular command to initialise or make available the system extensions. Some interfaces use the FLP_EXT command to install the floppy disk extensions, and others require the TK2_EXT command to assert the Toolkit 2 definitions of certain extensions to familar BASIC commands and functions.

TK2_EXT

TK2_EXT enforces the Toolkit 2 definitions of common commands and functions. If extensions have been re-defined, entering a TK2_EXT command will reassert the Toolkit 2 definitions.

FLP_EXT
FLP_EXT is used to link in most of the extensions. This command may be included in a BOOT file or typed on the keyboard at any time. Repeated use of this command will inevitably use up space in the QL's memory.

If some of the extensions have been referred to before the FLP_EXT command is used, then the NEW command may have to be typed before these extensions will become available.

Note: Not all disk interfaces require you to enter these commands!

The EXTRAS command

To list available BASIC extensions on your system, use the EXTRAS command described below.

The extensions provided by most disk interfaces fall into the following categories.

1. Device Naming and Defaulting

2. Random Access I/O

3. File Handling

4. File Maintenance

5. Executing Programs

6. Job Control

7. Screen Handling and Character Fount Setting

8. Memory Allocation

9. Conversions

10. Resident Clock

11. Disk Control

Given below is the name of each command, a brief explanation of what it does and an example of the syntax employed when using the command.

4.0.1 EXTRAS

A very useful command that you may wish to use is the EXTRAS command. This command will list on the screen all other additional commands provided by the disk interface unit, together with any commands loaded into RAM at power up (boot).

To use the EXTRAS command simply type:

EXTRAS

and press the ENTER key. All other additional commands will be displayed on the screen. An optional channel number may be used with the command to send the list to a specified channel instead, e.g.

EXTRAS #2 will send the list to screen window channel 2 (default is normally #1)

4.1 Device Naming And Defaulting

4.1.1 FLP_USE

Renaming the Floppy Driver.

It is possible to change the name of the floppy disk device to any sequence of three characters using the command FLP_USE. This command may be used to cause the disks to emulate the microdrives if the characters 'mdv' are used. The syntax is:

FLP_USE string

where string is any 3 characters, e.g.

FLP_USE mdv

will start microdrive emulation. Note changing the name of the floppy disks does not change the strings set by PROG_USE and DATA_USE.

4.1.2 PROG_USE, DATA_USE

The disk interface ROM provides additional commands to allow you to use default devices in file names. The ROM includes new definitions of the EXEC and EXEC_W SuperBasic commands (EX and EW) which allow the program name specified to miss off the initial drive specification. The default drive specification is set by the PROG_USE command. All of the other additional commands provided by the ROM add the default set by the DATA USE command. The syntax of these commands is:

PROG_USE name

DATA_USE name

where name is any sequence of characters which will be appended to the file name, e.g.

PROG_USE flp2_

DATA_USE flp1_data_

If the directory name supplied does not end with '_', '_' will be appended to the_directory name. The directory name can be more detailed than just a device name.

For example:

DATA_USE flp1_project5_library

.....

WDIR

ferr = FOP_NEW(#3, fred)

will produce a directory listing Of all files with names starting with 'flp1_project5_library' and then open a new file called 'flp1_project5_library_fred' . The default set by this command is optional, and is only used if the name supplied to a command is not a valid file or device name. Thus:

ferr = FOP_NEW(#3, flp2_fred)

will open the file 'flp2_fred' rather than the file

'flp1_project5_library_flp2_fred' !

The initial values of PROG_USE and DATA_USE are flp1_ and flp2_ respectively.

N.B. These commands set defaults only for commands provided by the disk interface rom - they do not affect the normal commands such as LOAD, SAVE etc.

4.2 Random Access I/O

In QDOS, files appear as a continuous stream of bytes. On directory devices (microdrives, floppy disks etc.) the file pointer can be set to any position in a file. This provides 'direct access' to any data stored in the file. Access implies both read access and, if the file is not open for read only (OPEN_IN from SuperBASIC, IO.SHARE in QDOS), write access. Parts of a file as small as a byte may be read from, or written to any position within a file. QDOS does not impose any fixed record structures upon files: applications may provide these if they wish.

Procedures are provided for accessing single bytes, integers, floating point numbers and strings. There is also a function for finding the current file position.

The general form of the direct I/O commands is:

 command #n [pointer] ,item

or command item ,item

It is usual (although not essential - the default is #3) to give a channel number for the direct I/O commands. If the pointer is given, the file position is set before processing the list of I/O items: if the pointer is a floating point variable rather than an expression, then, when all items have been read from or written to the file, the pointer is updated to the current file position.

4.2.1 BPUT BGET - Byte I/O

BPUT #n [pointer] ,item

BPUT #n [pointer] ,item

BGET gets 0 or more bytes from the channel. BPUT puts 0 or more bytes into the channel. For BGET, each item must be floating point or integer variable: for each variable, a byte is fetched from the channel For BPUT, for each item a each item must evaluate to an integer between 0 and 255, byte is sent to the output channel.

For example the statements

abcd=2.6

zz%=243

BPUT #3,abcd+1,'12',zz%

will put the byte values 4, 12 and 243 after the current file position.

Provided no attempt is made to set a file position, the direct 1/O routines can be used to send unformatted data to devices which are not part of the file system. If, for example, a channel is opened to an Epson compatible printer (channel #3) then the printer may put into condensed underline mode by

 BPUT #3,15,27,45,1

instead of

 PRINT #3,chr$(15);chr$(27);'-';chr$(1);

4.2.2 GET PUT - Unformatted I/O

It is possible to put or get values in their internal form. The PRINT and INPUT commands of SuperBASIC handle formatted IO, whereas the direct I/O routines GET and PUT handle unformatted I/O. For example, if the value 1.5 is PRINTed the byte values 49 ('1'), 46 ('.') and 53 ('5') are sent to the output channel. Internally, however the number 1.5 is represented by 6 bytes (as are all other floating point numbers). These six bytes have the value 08 01 60 00 00 00 (in hexadecimal). If the value is PUT, these 6 bytes are sent to the output channel.

The internal form of an integer is 2 bytes (most significant bytes first). The internal form of a floating point number is a 2 byte exponent to base 2 (offset by hex 81F), followed by a 4 byte maintissa, normalised so that the most significant bits (bits 31 and 30) are different. The internal form of a string is a 2 byte positive integer, holding the number of characters in the string, followed by the characters.

GET #n [pointer) ,item

PUT #n [pointer) ,item

GET gets data in internal format from the channel. PUT puts data in internal format into the channel. For GET, each item must be an integer floating point, or string variable. Each item should match the type of the next data item from the channel. For PUT the type of data, put into the channel, is the type of the item in the parameter list. The commands

fpoint=54

...

wally% =42: salary=78000: name$='Smith'

PUT #3, fpoint, wally%, salary, name$

will position the file, open on #3, to the 54th byte, and put 2 bytes (integer 42), 6 bytes (floating point 78000), 2 bytes (integer 5) and the 5 characters 'Smith'. Fpoint will be set to 69 (54+2+6+2+5)

For variables or array elements the type is self evident, while for expressions there are some tricks which can be used to force the type:

....+0 will force floating point type;

....&" will force string type;

....||0 will force integer type

xyz$= 'ab258.z'

....

BPUT #3,37,xyz$(3 to 5) || 0

will position the file opened on channel #3 to the 37th byte and then will put the integer 258 on the file in the form of 2 bytes (value 1 and 2, i e. 1*256+2).

4.2.3 FPOS - File Position Enquiry

There is one function to assist in direct access 1/O: FPOS returns the current file position for a channel. The syntax is:

FPOS (#n)

For example:

PUT #4\102,valuel,value2

ptr = FPOS (#4)

will set 'ptr' to 114 (=102+6+6).

The file pointer can be set by using any of GET, BGET , PUT or BPUT with no items to be got or put. If an attempt is made to put the file pointer beyond the end of file, the file pointer will be set to the end of file and no error will be returned. Note that setting the file pointer does not mean that the required part of the file is actually in a buffer but that the required part of the file is being fetched. In this way it is possible for an application to control prefetch of parts of a file.

4.2.4 FLEN FTYP FDAT - File Enquiry Functions

There are three functions to extract information from the header of a file. Note that in current versions of the microdrive handler, the header is only updated on a FS.HEADS call or on closing the file. This means that the file length read from the header is the file length as it was when the file was opened.

If a file is being extended, the file length can be found by using the FPOS function to find the current file position. (If necessary the file pointer can be set to the end of file by the command GET #n\9999

FLEN(#n) returns the file length,

FTYP(#n) returns the file type (O=normal,l=EXEC,2=S-ROFF),

FDAT(#n) returns the data space for EXEC files.

OPEN #3,flp1_fred PRINTs the length of file fred on flp1_

PRINT FLEN(#3)

4.3 File Handling

4.3.1 FOPEN FOP_IN FOP_NEW FOP_OVER FOP_DIR - File Open Functions

There is a set of functions for opening files. These functions differ from the OPEN procedures in ROM in two ways: firstly if a file system error occurs (e.g. 'not found' or 'already exists') these functions return the error code and continue: secondly the functions use the DATA_USE directory default.

FOPEN (#3,name) open for read/write

FOP_IN (#3,name) open for read only

FOP_NEW (#3,name) open a new file

FOP_OVER (#3,name) open a new file, or overwrite old file

FOP_DIR (#3,name) open a directory

Directory entries may be read using GET to get information. Each entry is 64 bytes long, the length of the file is at the start of the entry, there is a standard string starting at the 14th byte of the entry giving the filename and there is the update date as a long integer starting at the 56th byte.

Example of File Open

A file may be opened for read only with an optional extension using the following code

ferr= FOP_IN (#3,name$&'_ASM') : REMark try to open _ASM file

IF ferr=-7: ferr= FOP_IN (#3,name$) : REMark ERR.NF, try no _ASM

4.4 File Maintenance

4.4.1 RENAME - Changing A File's Name

RENAME old,new

renames a file: the DATA_USE default directory is used for both filenames.

4.4.2 TRUNCATE - Shortening A File

TRUNCATE #n

truncates the file open on #n to the current file position.

4.4.3 VIEW - Examining a File

VIEW is a procedure intended to allow a file to be examined in a window on the QL display.

VIEW name view a file (in #1): lines are truncated to fit

 in the window, and when the window is full, CTRL

 F5 is generated.

VIEW #window,name view a file in a given window; the DATA_USE

 directory default is used.

4.4.4 STAT - Examining A Medium

STAT [#n,][name]

prints medium name, number of free sectors, total number of sectors.

4.4.5 WDIR WSTAT - Examining a Directory

WDIR[#n,][wild_name]

lists directory, generates CTRL F5 when the window is full.

WSTAT [#n,][wild_name]

list file name, length and last update date, generates CTRL F5 when the window is full.

4.4.6 WDEL WDEL_F - Deleting Multiple Files

WDEL [#n,][wild_name]

deletes files (requests confirmation).

WDEL_F [wild_name]

deletes files (forced)

When using WDEL each filename is written to the chosen channel and the user is requested to press one of the keys.

Y (yes) delete this file;

N (no) do not delete this file;

Q (quit) do not delete this or any of the next files

A (all) delete this and all the next matching files

4.4.7 Wild File Names

The wild_name in these procedures may refer to more than one file. To do this file names are divided into sections (e.g. mdv2_fred_bin has three sections) and a wild name may have missing sections (e g mdv2_old_ _list has one missing section). All those files whose names have sections matching the sections in the wild name are referenced hy the commands. In the following examples flp2_ is assumed to be the default data directory.

Wild name Typical matching files

fred flp2_fred

 flp2_freda_llst

_fred flp2_fred

 flp2_freda_llst

 flp2_old_fred

 flp2_old_freda_list

flp1_old_ _list flp1_old_jo_list

 flp1_old_freda_list

4.4.8 WCOPY - Wild Card Copying

The WCOPY command has several optional forms:

WCOPY source wild name TO destination wild name

WCOPY source wild name, destination wild name

WCOPY #channel,source wild name TO destination wild name

WCOPY #channel,source wild name, destination wild name

If no channel is given, the dialogue will be in channel #0.

When using WCOPY, each source and destination filename is written to the chosen channel, and the user is requested to press one of:

Y (yes) copy this file

N (no) do not copy this file

Q (quit) do not copy this or any more files

A (all) copy this and all the next matching files.

If the destination file already exists, the user is requested to press one of.

Y (yes) copy this file, overwriting the old file

N (no) do not copy this file

Q (quit) do not copy this or any more files

A (all) overwrite the old file, and any other files requested to

 be copied

WCOPY may be used to copy entire directories. The destination name is made up from the actual source file name and the destination wild name. If a missing section of the source wild name is matched by a missing section of the destination wild name then that part of the actual source file name will be used as the corresponding part of the actual destination name. Otherwise the actual destination file name is taken from the destination wild name. If there are more sections in the destination wild name than in the source wild name, these extra sections will be inserted after the drive name, and vice versa.

For example, if the default data directory is flp2_, then

WCOPY flp1_,flp2_ would copy all files on flp1 to flp2

WCOPY fred, mog would copy

 flp2_fred to flp2_mog

 flp2_freda_list to flp2_moga_list

WCOPY _fred,_mog would copy

 flp2_fred to flp2_mog

 flp2_freda_list to flp2_moga_list

 flp2_old_fred to flp2_oldmog

 flp2_old_freda_list to flp2_old_moga_list

WCOPY list,old_list would copy

 flp2_jo_list to flp2_old_jo_list

 flp2_freda_list to flp2_old_freda_list

WCOPY old_list,flp1_list would copy

 flp2_old_jo_list to flp1_jo_list

 flp2_old_freda_list to flp1_freda_list

4.4.9 SPL SPL_USE - File Spooler

The SPL procedure sets up a job to copy a file. Only the source need be given: the destination may be defaulted. The source file has its default set up by the DATA USE command. The default destination is SER. The SuperBASIC interpreter will continue after the job has been set up, the file being copied in the background. SPL differs from COPY not only in that it operates as a job in the background, but also in its handling of file headers. The COPY procedure copies both the file and its header: to copy a file to a device like a printer, the variant, COPY N is used to copy without a header. SPL will will however, not copy the header from an ordinary data file, but it will copy the header of a file which is one of the special types (e.g. executable program file). Furthermore, when using SPL to copy from file to file, if the destination file already exists, then it will be overwritten.

The command syntax is

SPL source_file or

SPL source_file TO destination

The source and destination files may be given as names, or as a SuperBASIC channel number (e.g. #3).

The default set by the DATA_USE command is used to find the source file, and there is a special command, SPL_USE, to set the default destination. The default destination device or directory may be up to 32 characters long.

 SPL_USE device_name

or SPL_USE directory_name

A device name does not end in '_' ; a directory_name must end in '_'

If the SPL command is given with only one parameter (the source filename) the output file (or device) will be derived from the current default set by SPL_USE as follows:

1) directory_name & source_filename or

2) device_name

If the SPL command is given with two parameters, the output file (or device) will be derived as follows:

1) destination_filename or

2) directory_name & destination_filename

SPL will often be used to copy files in the background, but it can be used as a true spooler when used with the default output device. In this case, if the output device is in use, the SPL job will suspend itself until the device is available.

SPL Examples

SPL myfile using the supplied defaults

 this will spool FLP2_MYFILE to SER.

SPL flp1_demo_myfile TO ser2 the file FLP1_DEMO_MYFILE

 will be spooled to SER2.

DATA_USE flp2_demo this will also spool the

SPL_USE ser2 file FLP2_DEMO_MYFILE to

 SER2

SPL myfile

SPL mdv2_myfile, mdv1_myfile does the obvious

SPL_USE mdvl_ using the supplied DATA_USE

 default, this will also_spool

SPL tax FLP2_TAX to MDV1_TAX.

SPL yourfile to #3 will spool yourfile to

 the file or device already

 opened as #3.

4.5 Executing Programs

4.5.1 EX EW

These commands are enhanced versions of the standard SuperBASIC EXEC and EXEC_W respectively. For simple use, the commands are interchangeable. The syntax is:

EX program_filename

ET program_filename, filename, filename ...

EX program_filename; option string

ET program_filename, filename.../;option_string

EX also provides default directories for the program and data files. At power on programs are taken from FLP1_ and data files are assumed to be on FLP2_ (this may vary from interface to interface, and may depend on the initial setting of the program and/or data default directories set with PROG_USE and DATA_USE). For example:

EX cpy, myfile, myfile_sav

will, by default, use the program FLP1_CPY to copy FLP2_MYFILE to FLP2_MYFILE_SAV.

In place of the data filename, a SuperBASIG channel number may be used; the channel must be open and have the access (read or write) required by the filter. The following command will copy myfile to window #2:

EX cpy, myfile, #2

4.5.2 EX and multitasking

As we have already said it is possible to have several jobs running in the QL at any one time. Furthermore, it is possible to have a chain of cooperating jobs engaged in processing the same data in a 'production line'. When using a production line of this type each job performs a well-defined part of a total process. The first job takes the original data and does its part of the process, the partially processed data is then passed on to the next job which carries out its own part of the process. The data is passed from one job to the next using a 'pipe'; the data itself is called a 'stream' (which flows in one direction), and the jobs processing the data are called 'filters'.

The I/O subsystem within Qdos ensures that a job can handle a pipe just like any other simple I/O device, and so a job does not need to know that it is being used as a filter.

EX can initiate chains of programs (filters) connected by pipes. It is also possible to use EX to connect the SuperBASIC interpreter to a chain of jobs.

The complete form of the EX command is:

EX [#n TO] prog_spec TO prog_spec [to #m]

Each TO separator creates a pipe.

If the parameters of EX start with #n, then the SuperBASIC channel #n will be closed (if it was already open) and a new channel #n will be opened for output only. Sending any output to this channel will send the output down the pipe to the chain of jobs. When the channel is CLOSED, the chain of jobs will be removed from the QL.

If the parameters of EX end with #n, then the SuperBASIC channel #n will be closed (if it was already open) and a new channel #n will be opened for input only. Any data passing down the chain of jobs will appear in this input channel. When all the data has been passed, the jobs will remove themselves, and any further attempt to take input from this channel will get an 'end of file' error, which may be tested using the EOF function.

The program specification, prog_spec in the example above, is defined as:-

program fi1ename ,data_filename [;option string]

All filenames and the option string may be names, strings or string expressions. In addition the data filename may be a SuperBASIC channel number.

The significance of the filenames is to a certain extent program dependent, but there are two general rules which should be used by all filters:

the primary input of a filter is the pipe from the previous lob in the chain (if it exists), or else the first data file;

the primary output of a filter is the pipe to the next job in the chain (if it exists), or else the last data_file.

Many filters will have only two I/O channels: the primary input and the primary output.

4.5.3 EW Variant

The EW variant of EX will start a chain of jobs and suspend the SuperBASIC interpreter until the last lob in the chain has completed. Clearly the constructions '#n TO' and 'TO #n' cannot be used as, if it is suspended, the interpreter cannot send any output down a pipe, or take input from a pipe.

4.6 Job Control

As QDOS is a multitasking operating system, it is possible to have, at one time, in the QL a number of competing or co-operating jobs. Jobs compete for resources in line with their priority, and they may co-operate using pipes or shared memory to communicate. The basic attributes of a job are its priority and its position within the tree of jobs (ownership). A job is identified by two numbers: one is the job number which is an index into the table of jobs, and the other is a tag which is used to identify a particular job so that it cannot be confused with a previous job occupying the same position in the job table. Within QDOS the two numbers are combined into the job ID which is job number + tag*65536.

4.6.1 JOBS - Listing Running Jobs

There is a procedure which will list all the jobs running in the QL at the same time. If there are more jobs in the machine than can be listed in the output window, the procedure will freeze the screen (CTRL F5) when it is full. The procedure may fail if jobs are removed from the QL while the procedure is listing them. The following information is given for each job:

 the job number

 the job tag

 the job's owner job number

 a flag 'S' if the job is suspended

 the job priority

 the job (or program) name.

The syntax of the command is:

JOBS [#n] where #n is the channel for the listing

4.6.2 RJOB SPJOB - Controlling A Job

RJOB allows jobs to be removed from the machine without resetting the whole machine. The syntax is:

RJOB job_number, tag, error_number

where job_number and job_tag are as given by the JOBS command and error_code is the code that will be returned to any job that is waiting for the killed job to complete. e.g.

RJOB 1,5,0

will kill job number 1, tag 5 and report an error code of zero (success) to any waiting job.

SPJOB allows the priority of a job to be changed.

SPJOB job_id, priority sets a job's priority

4.7 Screen Handling and Character Fount Setting

4.7.1 CURSEN CURDIS WMON WTV

The function INKEY$ is designed so that data can be taken from the keyboard without enabling the cursor. Sometimes, however, it may prove useful to enable, the cursor in a particular window. When it is enabled, the cursor will appear solid. When an INKEY$ is called to get data from that window, the keyboard queue will be switched to the window (unless the window with the keyboard has an active cursor) and the cursor will start to flash. Note that INKEY$ defaults to input from #0, whereas CURSEN and CURDIS, like most other screen I/O commands, default to channel #1.

CURSEN enables the cursor in #1

CURSEN #Channel enables the channel's cursor

CURDIS disables the cursor in #1

CURDIS #Channel disables the channel's cursor

For example, the following code will enable the cursor in window #2, wait for ten seconds for a character to be typed in and then disable the cursor. If nothing is typed in within the ten seconds, in$ will be a null string.

CURSEN #2

in$ = INKEY$ (#2, 500)

CURDIS #2

There are two commands to resed the windows to the turn-on state:

WMON mode resets windows to monitor default.

WTV mode resets windows to TV default.

The mode should be 0, 4 or 512 for 4 colour (512 pixel) mode, or 8 or 256 for 8 colour (256 pixel) mode. Only the window sizes, positions and borders are set by these commands; the paper, strip and ink colours are unchanged.

4.7.2 CHAR_USE CHAR_INC

The QL has two character founts built in. The first provides the patterns for the character values from 32 (space) to 127 (copyright). The other provides the characters from 128-191 (foreign and special characters). The character generator will use a pattern from the first fount if one exists for that character value, or from the second fount, or if none exists, the lowest entry in the second fount.

CHAR_USE [#channel], address 1/O, address 2/O

sets the two founts for one window (default #1). If an address is zero, the fount is reset to the default.

The format of a fount in the QL is:

 byte lowest valid character value

 byte number of valid characters-l

9 bytes pixels for first character.

9 bytes pixels for next character; etc.

The pixels are stored with the top line in the lowest addressed byte. For each pixel of ink colour, a bit is set in the byte. The leftmost pixel is in bit 6 of the byte; the rightmost in bit 2.

CHAR_INC [#channel], width, height

sets the horizontal and vertical character spacing in pixel units. Extreme care should be taken if the increments are set to less than the size of the character size, in case characters at the right hand, or bottom edges of a window are drawn partly outside the window; if this is at the edge of, the screen, random corruption can occur. To avoid this, use borders to reduce the effective size of windows.

4.8 Memory Allocation

4.8.1 FREE_MEM ALCHP RECHP CLCHP

QDOS is a multitasking operating system; therefore there may be several jobs running in a QL, and the amount of free memory may vary unpredicably. No job may assume that the amount of free memory is fixed. To find the amount of free memory (this is defined as the space used for filing system slave blocks, less the space required for one slave block), the function FREE_MEM (which has no parameters) is used. The function ALCHP (allocate from common heap) is used to obtain memory. If there is not enough free memory in one piece, the function returns 0, otherwise it returns the address of the base of the area allocated. The area may be returned to QD0S by invoking RECHP (release to common heap). If the base address of an area in the heap has been forgotten (CLEAR or NEW), then all area may be CLCHP (clear common heap).

FREE_MEM returns current free memory

ALCHP (no of bytes) allocate a memory area

RECHP base address release a memory area

CLCHP release all areas allocated

It is inadvisable to take all the memory; at least 512 bytes should be left to avoid problems with microdrive handling.

4.9 Conversions

4.9.1 BIN$ HEX$ BIN HEX - Radix Conversions

A set of numeric conversion routines is provided: these convert values to hexadecimal or binary strings and vice versa, as well as values to fixed format decimal strings.

BIN$ (value, number_of_bits)

HEX$ (value, number_of_bits)

Each returns a string of sufficient length to represent the value of the specified number_of_bits of the least significant end of the value. In the case of HEX$ the number_of_bits is rounded up to the nearest multiple of 4.

BIN (string)

HEX (string)

Each converts the string supplied to a value. For BIN, any character in the string, whose ASCII value is even, is treated as 0; any character, whose ASCII value is odd, is treated as 1. E.g. BIN ('.#.#') returns the value 5. For HEX the 'digits' '0' to '9' 'A' to 'F' and 'a' to 'f' have their conventional meanings. HEX will return an error if it encounters a non-recognised character.

4.9.2 FDEC$ IDEC$ CDEC$

The functions convert values to decimal strings.

FDEC$ (value, number_of_chars, number_of_places)

IDEC$ (value, number_of_chars, number_of_places)

CDEC$ (value, number_of_chars, number_of_places)

FDEC$ converts the value as it is, whereas IDEC$ assumes that the value given is an integral representation in units of the least significant digit displayed. CDEC$ is for currency conversion, which is similar to IDEC$ except that there are commas every three digits.

FDEC$(1234.56, 9, 2) returns ' 1234.56'

IDEC$(123456,9,2) returns ' 1234.56'

CDEC$(123456,9,2) returns ' 1,234.56'

4.9.3 PARTYP PARUSE - Type Checking

The dummy parameters of a SuperBasic procedure or function have the same type and dimensions as the actual (calling) parameter. Two functions are provided to determine the type and usage of a parameter.

PARTYP(name) returns type: 0 = null

 1 = string

 2 = floating point

 3 = integer

PARUSE(name) returns usage: 0 = unset

 2 = variable

 3 = array

4.10 Resident Clock

4.10.1 CLOCK

There are a number of optional forms of the CLOCK command:

CLOCK default clock, two rows of ten characters in

 default position

CLOCK #channel default clock in open channel

CLOCK string user defined clock in defined position

CLOCK #channel,string user defined clock in defined channel

CLOCK is a procedure to set up a resident digital clock. If no window is specified, a default window is set up in the top right of the monitor channel 0. This window is 60x20 pixels and is only suitable for four colour mode. The clock may be invoked to execute within a window set up by BASIC. In this case the clock job will be removed when the window is closed.

The string is used to define the characters written to the clock window: any character may be written except '$' or '%'. If a dollar sign is found in the string the next character is checked and:

$d or $D will insert the first three characters of the name of

 the day of the week.

$m or $M will insert the first three characters of the name of

 the month.

If a percentage sign is found then:

%y or %Y will insert the two digit year.

%d or %D will insert the two digit day of month

%h or %H will insert the two digit hour

%m or %M will insert the two digit minute

%s or %S will insert the two digit second

The default string is '$d %d $m %h/%m/%s '; a new line should be forced by padding out a line with spaces until the right hand margin of the window is reached.

Example:

MODE 8

OPEN #6,'scr_156x10a32x16'

INK #6,0 : PAPER #6,4

CLOCK #6,'QL time %h:%m'

4.11 Disk Control

4.11.1 FLP_SEC FLP_START FLP_TRACK

There are three parameters of the floppy disk system which are available as user options.

The security level is selectable to allow a user to choose higher speed of access at the cost of reduced immunity to erroneous disk swapping. There are three security levels, the lowest level still being at least as secure as common disk based operating systems (e.g. MSDOS and CP/M).

FLP_SEC security level

Security Level O

At this lowest level of security, confusion or loss of data can be expected if a disk is changed while there are still files open or the motor is running.

Security Level 1

At this level of security, disks should only be changed while the motor is stopped (all select lights off). If a disk is changed while there are files open, then read operations will be confused, but any write operations will be aborted. This should maintain the integrity of the data on the disk.

Security Level 2

This is the default security level and data should be quite secure unless a disk is changed while the motors are running.

A user may specify the time taken for the disk drive motor to get the disk speed to within the specification.

FLP_START start_up_time

As a default this is set to .6 second, which is more than enough for most modern drives. The start up time parameter is in 20 millisecond units, so the default value is 30. A value of 13 (260 milliseconds) is adequate for the most recent direct drive 3.5 inch drives, while some older drives may require a value of about 60 (1.2 seconds).

A user may specify the number of tracks to be formatted on a disk.

FLP_TRACK nr_of_tracks

The QL format for disks allows the number of tracks on a disk to be read from the disk itself. However, the number of tracks must be determined when a disk is formatted. Normally the disk system will do this itself by checking if there are at least 55 tracks on a disk. If there are, there are assumed to be 80 tracks, otherwise it is assumed that there are 40 tracks. This internal check may be overriden, allowing 37 track and 75 track drives to be formatted.
5.0 Expansion RAM Memory

Many QL disk interfaces came without any additional RAM memory on board, having been designed for the earlier separate RAM cards which were available for the QL at the time. If the disk interface card has memory expansion on board, you cannot use a separate RAM card in addition to the memory on board the disk interface.

If the disk interface has no on-board RAM expansion, you can use a QL memory expansion card in conjunction with the disk interface in most cases. In a small number of cases you may find that memory cards from certain suppliers may fail to work properly with disk interface cards from a different manufacturer, although this is rare.

5.1 Connecting Interfaces Together

There are generally two ways of connecting separate RAM and disk interface cards to a QL.

(1) Some RAM cards have a through-connector, so that they plug first into the QL expansion slot, and allow a disk interface card to be plugged in turn into the RAM card’s expansion slot.

(2) By using a 2 or 4 way peripheral expansion module, such as the two way expansion modules produced by Simplex Data Logic and Adman Services, or the buffered 4-way Q+4 unit from CST. Buffered modules are generally better as you are less likely to get problems combining cards from different manufacturers.

In the case of method 1, the memory expansion card is first plugged into the QL expansion slot as described above. The disk interface card is then plugged into the 'spare’ slot on the end of the RAM card – the RAM card should be nearest to the QL to minimise timing and signal length problems. See Figure 5.

[image: image5.png]
Figure 5 – Using RAM and disk interface cards together

Configurations like this tend to leave the disk interface card supported only by the through connector plug and socket, meaning that where possible you should try to provide support of some kind for the external card where the QL is used tilted with its plastic feet. Provided that the disk interface has a plastic sleeve or case of some kind, it is quite easy to glue or blu-tac a small suitably sized wooden or plastic support under the interface, although it should not be attached to the printed circuit board itself for reasons of insulation and possible damage to the circuit board tracks. If the tracks under the disk interface are uninsulated and exposed, you should in any case try to insulate and physically protect them in some way, e.g. by attaching a thin sheet of insulating material under the circuit board.

If using a RAM card with no through connector, you will need to use a peripheral expansion module of some kind. Generally, these provide two or more 64-way expansion connectors, either in a side-by-side or double-decker (one above the other) formats. The disadvantage of the side-by-side type is that the QL cannot be used with its plastic feet, but the advantage is that as the QL is forced to lie flat, little or no support is required for the interfaces as they are supported by the desk surface on which the QL lies. Refer to the documentation supplied with such units to work out which card should be used in which slot.

[image: image6.png]
Figure 6 – Using Peripheral Expansion Units

Memory expansion cards generally come with 512KB (kilobytes) of add-on memory, although earlier units were available with capacities from 64KB to 256KB. Disk interfaces having on-board RAM expansion generally have 512KB, although some older disk interfaces such as the Technology Research Delta 64 and Delta 128 units only have 64KB or 128KB of on-board memory respectively. These memory expansions generally ADD to the standard internal QL memory of 128KB, so a board with 512KB of expansion memory would result in the QL having a total of 640KB of memory (512KB + 128KB).

With the original QL specification, 640KB was the maximum available amount of RAM addressable, although the Miracle Systems Trump Card interface later ‘tweaked’ the rules to give 768KB extra RAM, making a total of 896KB of RAM, the maximum which could be used with the standard 68008 processor used in a QL, without use of a different processor, as was done with later add-ons such as the Gold Card which provided a new 68000 processor chip and 2MB of RAM, and the Super Gold Card which provided a 68020 chip and 4MB of RAM.

5.2 RAM SIZE

Note: This facility is only implemented on interfaces such as Trump Card and Gold Card from Miracle Systems Ltd. It is not available on most older disk interfaces.

Some software fails if the QL has too much memory. The QL's memory can be reduced with the RES_SIZE command.

 RES_SIZE 14*64

will cause the QL to reset to give a capacity of 896K making the system look as though there is a TRUMP CARD 768K installed. A single reset sequence occurs after this command. RES_SIZE 128 is identical in operation to RES_128. Only allocate memory as RES_SIZE n*64 where n is an integer from 2 to 30.

6.0 Parallel Printer Interface

Some disk interfaces such as the Sandy SuperQBoard have an on-board parallel printer interface. This allows the use of printers with a parallel (Centronics-compatible) interface without having to use a serial to parallel interface conversion unit to connect such a printer to the QL’s serial ports.

All devices which connect your QL to the outside world are identified to QDOS by a name. The serial ports, marked SER1 and SER2, are identified by the name SER. The parallel printer port on QL disk interfaces is called PAR.

Host programs which send output to a printer are written to use the serial port SER1. The simplest way of changing over to using the parallel port is to include the command 'PAR_USE ser' which may be included in a BOOT file or entered directly at the keyboard. The command changes the name of the parallel port to SER and cancels the name of the serial ports. Any output sent to the serial ports will go to the parallel printer port instead.

For example, a modified BOOT program to load the PSION program QUILL could look like:

100 PAR_USE ser

110 CLEAR:WINDOW 512,256,0,0

120 AT 2, 4:PRINT "LOADING QUILL"

130 AT 4,13:PRINT "VERSION ";x.xx

140 AT 6,6 :PRINT "Copyright 1984 PSION LTD"

150 AT 8,12:PRINT "word processor"

160 CLOSE #l:CLOSE #2:WINDOW #0,400,20,35,215

170 EXEC_W MDVl_QUILL

180 OPEN#l,scr:OPEN #2,scr

....

....

The Psion programs, and many others, can be configured to change the name of the printer device. If this is to be done, it is only necessary to set the name of the printer to PAR in the Psion and other programs which have internal configuration for the various types of printers. Some other programs may require the name of the printer device to be set to PARC for use with most daisywheel printers.

It is possible to make the parallel printer port use a large buffer within the QL to make printing more efficient. Printers are slow devices; to avoid waiting for the printer to finish, particularly with long documents, it is advisable to use a buffer. The buffer is an area of memory set aside to store files waiting to be printed. Having a large buffer means that the whole print file can be stored and you can proceed with your task while the printing is handled in the background by the printer driver, which automatically handles the print file in the buffer. Several print files can be sent to a buffer without corruption, being queued by the printer driver until the printer is free.

This technique will not work on 128K QLs with the Psion programs which tend to grab all the QL's available memory for themselves, and it is most effective to use with additional memory.

6.1 More Power To Your Printer

The QJUMP driver for the parallel printer port provides several advantages over the SER drivers provided with the QL.

Large buffers may be specified to allow efficient printer spooling

A form feed may be created automatically when the channel is closed.

While only one channel may be open to the parallel printer port at a time, many complete print files may be held pending without tying up the port.

A channel is opened to the parallel printer in exactly the same way as a channel is opened to one of the QL's serial ports. The only differences lie in the name that is used, and the options which are accepted as part of that name.

The specification of the device name is:

 PARcf_nk the 'c' flag is used if a carriage return <CR>

 is required as the newline character

 the 'f' flag is used if a form feed is required

 when the channel is c1osed

 n is the buffer size in bytes (up to 32767)

 unless...

 the 'k' flag is used to specify the buffer size

 in kilobytes

For example :

 PAR parallel printer port with default buffer

 PARf_3k ... with form feed at the end of a file and a

 3 kilobytes buffer, resets the default buffer

 length to 3 kilobytes

 PARc_400 ... with <CR> in place of <LF> as newline and a

 400 byte buffer, resets the default length to

 400 bytes

The initial default buffer length is 128 bytes

6.2 SER Emulation

There is an additional SuperBASIC command to make it possible to get the benefits off the parallel printer port without any need to change existing programs that use one of the QL's SER ports for printer output. This is the PAR_USE command.

 PAR_USE SER

Will make the parallel printer port recognise the device name 'SER' in addition to the device name PAR. The normal SER options of port number, parity, handshaking and protocols are ignored, while the PAR options are recognised. In particular, the default buffer length, set when a PAR channel is opened with a specified buffer length, is used for the pseudo-SER device.

For example:

 OPEN #3,PAR_10K : CLOSE #3 : REMark reset default buffer

 PAR_USE SER

 OPEN #3,SER1C

Will open a channel to the parallel printer port with a 10 kilobyte buffer, and <CR> in place of <LF>, in the same way as the command:

 OPEN #3,PARC_10K

This facility is disabled by re-specifying the PAR_USE to exclude the name SER. This will return the serial ports to their normal usage:

 PAR_USE PAR

6.3 Multiple Buffering

To illustrate the multiple buffer capability of the printer driver, connect a printer and set it 'off line', then type in and run the following program:

 100 FOR try=1 TO 4

 110 OPEN #3,PARf_2K

 120 FOR lno=1 TO 50: PRINT #3,'Line ';lno;' of try ';try

 130 END FOR try

 140 CLOSE #3

When the printer is turned 'on line' the printer should print each try in turn, showing the way in which the multiple outputs are queued, rather than confused, inside the parallel port driver.

6.4 Parallel Interface Connector

The printer connector is designed to be Centronic compatible, and the pin connections are detailed as below:

 0V -- 1 2 -- strobe

 0V -- 3 4 -- data bit 0

 0V -- 5 6 -- data bit 1

 0V -- 7 8 -- data bit 2

 0V -- 9 10 -- data bit 3

 0V -- 11 12 -- data bit 4

 0V -- 13 14 -- data bit 5

 0V -- 15 16 -- data bit 6

 0V -- 17 18 -- data bit 7

 0v -- 19 20 --

 0v -- 21 22 -- busy

 0v -- 23 24 --

 0V -- 25 26 --

The pin numbers of the 26-pin IDC connector, looking into the unit, are assigned as below:

 25 3 1

 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0

 26 4 2

7.0 RAM Disk System

The term RAM DISK is a misnomer. It is used to describe a 'virtual' device, one that exists only within the memory of the QL, which looks and behaves like a very fast disk drive. It is so fast because being virtual, there is nothing mechanical to move around to get information in and out. It is, in reality, a reserved area of the QL's memory. This means that the memory taken by a ram disk is no longer available to a program. It also means that all its contents will be lost if the QL is reset or turned off.

Up to 8 RAM disks can be formatted at the same time and may be of any size, subject to the limitations of available memory. The normal usage of a ram disk would be to copy all working files from a floppy disk or microdrive into a ram disk, rename the RAM disk as 'mdv' to pretend the data is really on microdrives, execute the programs, then at the end of a session rename the RAM disk as 'RAM' before copying all its contents onto microdrive.

It is just as easy to use a RAM disk directly without changing its name. All the filing system commands described under the 'Microdrives' heading in the concepts section of the QL User Guide will work with RAM disks, provided the filenames start with 'RAM' instead of 'MDV'.

FORMAT ram2_200 creates new RAM disk 2, see below

DIR ram1_ directory listing of RAM disk 1

SAVE ram1_myprog save the current SuperBASIC program

 as 'myproc' in RAM disk 1

OPEN_NEW #3,ram2_data creates and opens a new file 'data' in

 RAM disk 2

COPY mdvl_x to raml_x copies file x from microdrive 1 to RAM

 disk 1

7.1 RAM Disk Creation

There are two forms of RAM disk for the QL; in one form the space for the files in the RAM disk is allocated dynamically using any spare memory in the QL. Unfortunately, this scheme, although very simple to implement using QDOS, does not work in conjunction with Psion programs or any other programs which automatically use all the spare memory themselves, However, the second form of RAM disk has its own memory allocation routines which operate within a pre-defined area of the QL's memory, these are Static RAM disks. Static RAM disks are more common on older QL interfaces, although plenty of disk expansion units came with dynamic RAM disk systems.

A dynamic RAM disk is created just by accessing it with any normal operation (e.g. DIR). This type of RAM disk takes memory as required, and releases any memory as files are deleted or truncated – the RAM disk grows or shrinks in size as required within the limits of available memory.

A static RAM disk on the other hand is created by formatting it : the size, in sectors, is given in place of the usual medium name.

 FORMAT ram2_80

removes the old RAM disk 2, if there was one, and sets up a new RAM disk of 80 sectors. A static RAM disk may be removed by formatting it to zero sectors, or with no number at all:

 FORMAT ram1_ or FORMAT raml_0

The RAM disk number should be between 1 and 8, inclusive, while the number of sectors is limited only by the amount of memory available. It is important to note that each sector is the same size as a microdrive sector, which is 512 bytes (or characters} long. If you wish to, for example, load a 16 kilobyte program into a RAM disk the RAM disk must be formatted to at least 32 sectors.

In the case of a dynamic RAM disk, FORMAT ram1_ or FORMAT ram1_0 is used to remove all files from the RAM disk and empty the RAM disk.

7.2 Microdrive Emulation

The standard driver includes a SuperBASIC procedure RAM_USE to change the name of the RAM disk driver.

 RAM_USE mdv or RAM_USE 'mdv'

resets the name of the RAM disk driver to 'mdv', so that all subsequent microdrive commands will operate the RAM disk instead:

 RAM_USE mdv

 ..

 OPEN #3, mdvl_myfile

will actually open the file 'myfile' on RAM disk 1, rather than trying to open a file on microdrive 1.

Any three letters may be used as a new device name.

 RAM_USE ram

will reset the driver and microdrives to their normal state.

7.3 Heap Fragmentation

The primary storage mechanism in the QL for permanent or semi-permanent memory allocations is the 'heap'. Allocating space in a heap, and then re-allocating this space as a different size, inevitably causes holes to be left within the heap. This reduces the amount of memory available to either SuperBASIC or executable programs.

The RAM disk driver has precautions to prevent the possibility of heap fragmentation, but it is preferable to consider a RAM disk to be a permanent feature until the QL is reset.

Using a fixed (static) RAM disk not only reduces the risk of common heap fragmentation, but also provides higher access speeds during file creation. Since it always occupies the maximum space you ever wish to use, it is much less flexible.

7.4 Examples

The following example will copy selected files from the microdrive cartridge to the RAM disk as well as copying Quill (v2.3, other versions may require a different size of RAM disk,

100 PRINT #0,'Put QUILL in MDVl and press a key'

110 PAUSE

120 FORMAT ram1_150

130 COPY mdvl_quill,ram1_quill

140 COPY mdvl_quil_hob,ram1_quil_hob

150 COPY mdvl_printer_dat,raml_printer_dat

160 :

170 PRINT #0,'Put data cartridge in MDV2 and press a key.'

180 PAUSE

190 FORMAT ram2_200

200 OPEN_NEW #3,ram2_file_list : REMark make list of files

210 DIR #3,mdv2_

220 CLOSE #3

230 OPEN_IN #3,ram2_file_list

240 INPUT #3, a$,a$: REMark skip heading

250 REPeat files

260 IF EOF(#3) : EXIT files

270 INPUT #3,file$

280 INPUT #0, 'copy '&file$&' to RAM disk? ',ans$

290 IF 'y' INSTR ans$: COPY 'mdv2_'&file$ to 'ram2_'&file$

300 END REPeat files

310 CLOSE #3

320 DELETE ram2_file_list

330 :

340 RAM_USE mdv : REMark all across from mdv

This program copies files back to microdrive at the end of a session.

100 RAM_USE ram : REMark reset RAM name

110 :

120 PRINT #0, 'Put the data cartridge in MDV2 and press a key'

130 PAUSE

140 OPEN_NEW #3,ram2_file_list: REMark make list of files

150 DIR #3,ram2_

160 CLOSE #3

170 OPEN_IN #3,ram2_file_list

180 INPUT #3,a$,a$: REMark skip heading

190 REPeat files

200 IF EOF(#3): EXIT files

210 INPUT #3,file$

220 IF file$='file_list': NEXT files

230 DELETE 'mdv2_'&fi1e$

240 COPY 'ram2_'&file$ TO 'mdv2_'&file$

250 END REPeat files

260 CLOSE #3

270 DELETE ram2_file_list

7.5 Microdrive Imaging

Microdrive imaging is a very fast method of loading files from a microdrive cartridge. This feature is not present on all QL disk interfaces!

To produce a microdrive image, a RAM disk is formatted with the name of the microdrive required:

 FORMAT RAM1_mdv2 loads an image of mdv2_ into RAM disk 1

The RAM disk can even load a microdrive with a damaged directory. It cannot, however, load a microdrive with a damaged map.

The RAM disk will try up to 3 times to read a faulty sector. If it fails, the number of good sectors returned from the format will be fewer than the total number. Any file with bad sectors will be marked with an "*” in the RAM disk directory.

7.6 Floppy and RAM Disk Compatibility

The QJUMP Floppy Disk and RAM Disk drivers not only provide all the

built-in Microdrive filing system operations, but include the extended filing system operations provided in the Sinclair QL Toolkit and QJUMP Super Toolkit II for Microdrives. This allows all the SuperBASIC extensions provided in the Toolkits (e.g. FOP_OVER, RENAME etc.) to be used with the floppy disks

 OPEN OVERWRITE Trap #2, D0=1, D3=3

 This variant of the OPEN call opens a file for

 write/read whether it exists or not. The file

 is truncated to zero length before use.

 RENAME Trap #3, D0=4A, A1 points to new name

 This call renames a file. The name should include

 the drive name (e.g. FLP1_NEW_NAME).

 TRUNCATE Trap #3, D0=4B

 This call truncates a file to the current byte

 position.

In addition the FS.FLUSH call for a file, not only flushes all the

file buffers, but, unlike the Microdrive driver, updates the map and

the directory. This means that a new file can be created, and if it is flushed, then in the event of the QL being turned off or reset before the file is closed, then all of the file (up to the point where it was last flushed), is readable. In effect a FLUSH call is just the same as a CLOSE call, except that the file remains open and the file pointer remains unchanged.

