
QPC
Keywords

This Keyword Reference Guide lists all the QPC2 keywords in alphabetical order: A brief
explanation of the keywords function is given followed by loose definition of the syntax and
examples of usage.

This guide is a combination of the Sinclair QL manuals Keyword section, the (Super)Gold card
manual, the Toolkit 2 manual, the SMSQ/E manual, and the QPC2 manual.

© 1984 SINCLAIR RESEARCH LIMITED
© MIRACLE SYSTEMS
© 1994-2002 TONY TEBBY
© MARCEL KILGUS
© DILWYN JONES

QPC2 V5.02 SMSQ/E V3.38 Release V1.05

2 04/23

ABS maths functions
ABS returns the absolute value of the parameter. It will return the value of the parameter if the
parameter is positive and will return zero minus the value of the parameter if the parameter is
negative.

syntax. ABS(numeric_expression)

example: i. PRINT ABS(0.5)
 ii. PRINT ABS(a-b)

ACOS, ASIN
ACOT, ATAN maths functions
ACOS and ASIN will compute the arc cosine and the arc sine respectively. ACOT will calculate
the arc cotangent and ATAN will calculate the arc tangent. There is no effective limit to the size
of the parameter.

ATAN will provide a 4 quadrant result by taking two parameters. If x is greater than 0, ATAN
(x,y) give the same results as ATAN (y/x). Otherwise it returns values in the other quadrants
(>PI/2 and <-PI/2).

syntax: angle:= numeric_expression [in radians]

ACOS (angle) ACOT (angle)
ASIN (angle) ATAN (angle [,angle])

example: i. PRINT ATAN(angle)
 ii. PRINT ASIN(1)
 iii. PRINT ACOT(3.6574)
 iv. PRINT ATAN(a-b)

ADATE clock
ADATE allows the clock to be adjusted.

syntax: seconds:= numeric_expression

ADATE seconds

example: i. ADATE 3600 {advance the clock 1 hour}
ii. ADATE -60 {move the clock back 1 minute}

AJOB job control
AJOB is used to re-activate jobs which have been suspended.

syntax: job_identifier:= | job_number , tag_number
| job_number + (tag_number * 65536)

id:= job_identifier

AJOB id | name , priority

example: i. AJOB demon,1 {start the Job called 'demon' with a priority of 1}
ii. AJOB 2,1,80 {start the job, Job number 2, Tag number 1 with a

 priority of 80}

comment: If a name is given rather than a Job ID, then the procedure will search for the first
Job it can find with the given name.

04/23 3

ALARM timekeeping
ALARM is a procedure to set up an alarm using the QPC2's system clock.

The time should be specified as two numbers: hours (24 hour clock) and minutes.

syntax: time:= numeric_expression , numeric_expression
ALARM time

example: ALARM 14,30 {alarm will sound at half past two}

ALCHP
RECHP memory management
The function ALCHP will allocate the requested amount of memory from the ‘common heap’
and return the base address of the space.

RECHP will return space allocated by ALCHP back to the ‘common heap’.

syntax: number_of_bytes:= numeric_expression

ALCHP (number_of_bytes)
RECHP base_address

example: i. base = ALCHP (3000) {allocate 3000 bytes from the heap}
ii. RECHP base {return 3000 bytes allocated in i above}

ALPHA_BLEND graphics
The ALPHA_BLEND command sets the transparency of shapes and text drawn to the screen,
Allowing the underlying graphics and text to show through.

The level of the transparency may be set from 0, fully transparent. To 255, opaque

syntax: ALPHA_BLEND numeric_expression

example: ALPHA_BLEND 128 {make output half transparent}

ALTKEY console driver
The ALTKEY command assigns a string to an 'ALT' keystroke (hold the ALT key down and
press another key). The string itself may contain newline characters, or, if more than one string
is given, then there will be an implicit newline between the strings. Thus a null string may be put
at the end to add a newline to the string.

ALTKEY with just character alone will cancel the string associated with that character.

ALTKEY alone will cancel all ALTKEY strings.

syntax: ALTKEY [character, strings]

example: i. ALTKEY 'r', 'RJOB "SPL"','' {when ALT r is pressed, the command
ii. ALTKEY 'r', 'RJOB "SPL"' & CHR$(10) 'RJOB "SPL"' will be executed}
iii. ALTKEY 'r' {will cancel the ALTKEY string for 'r'}
iv. ALTKEY {cancel all ALTKEY strings}

comment: ALTKEY is case dependent i.e. ALT r is not the same as ALT R.

4 04/23

ARC
ARC_R graphics
ARC will draw an arc of a circle between two specified points in the window attached to the
default or specified channel. The end points of the arc are specified using the graphics co-
ordinate system.

Multiple arcs can be drawn with a single ARC command.

The end points of the arc can be specified in absolute coordinates (relative to the graphics origin
or in relative coordinates (relative to the graphics cursor). If the first point is omitted then the arc
is drawn from the graphics cursor to the specified point through the specified angle.

ARC will always draw with absolute coordinates, while ARC_R will always draw relative to the
graphics cursor.

syntax: x:= numeric_expression
 y:= numeric_expression
 angle:= numeric_expression (in radians)
 point:= x,y

 parameter_2:= | TO point, angle (1)
 | ,point TO point,angle (2)

 parameter_1:= | point TO point,angle (1)
 | TO point,angle (2)

ARC [channel,] parameter_1 *[parameter_2]*
ARC_R [channel,] parameter_1 *[parameter_2]*

where (1) will draw from the specified point to the next specified
 point turning through the specified angle

 (2) will draw from the last point plotted to the specified
 point turning through the specified angle

example: i. ARC 15,10 TO 40,40,PI/2
 {draw an are from 15,10 to 40,40 turning through PI/2 radians}
 ii. ARC TO 50,50,PI/2
 {draw an are from the last point plotted to 50,50 turning through

PI/2 radians}
 iii. ARC_R 10,10 TO 55,45,0.5

{draw an are, starting 10,10 from the last point plotted to 55,45
from the start of the are, turning through 0.5 radians}

AT windows
AT allows the print position to be modified on an imaginary row/column grid based on the
current character size. AT uses a modified form of the pixel coordinate system where (row 0,
column 0) is in the top left hand corner of the window. AT affects the print position in the window
attached to the specified or default channel.

syntax: line:= numeric_expression
 column:= numeric_expression

AT [channel,] line , column

example: AT 10,20 : PRINT "This is at line 10 column 20"

04/23 5

AUTO SBASIC editor
AUTO has been replaced by ED.

AY_CHIPS programmable sound generator
AY_CHIPS is a function to return the number of AY-3 chips that are emulated by QPC2

syntax: AY_CHIPS

example: i. PRINT AY_CHIPS
ii. chip_count = AY_CHIPS

note: For more information on the AY-3 sound system, see the QPC Concepts document.

warning: This command is currently broken. It returns 518, where it should be 2
See the QPC Concepts document for a patch program.

AY_TYPE programmable sound generator
AY_TYPE is a function to return the type of the AY-3 chips that are emulated by QPC2

syntax: AY_TYPE

example: i. PRINT AY_TYPE
ii. chip_type = AY_TYPE

note: For more information on the AY-3 sound system, see the QPC Concepts document.

warning: This command is currently broken. It returns 1, where it should be 0
See the QPC Concepts document for a patch program.

6 04/23

BAUD communications
BAUD sets the baud rate for communication via the serial channels. The speed of the channels
may be set independently by supplying an optional port number.

If no port number is supplied, then the command will default to SER1.

syntax: rate:= numeric_expression
port:= numeric_expression

BAUD [port,] rate

The value of the rate numeric expression must be one of the supported baud rates
supported by SMSQ/E on QPC2:

 300
 600
 1200
 2400
 4800
 9600
 19200

38400
57600
115200

If the selected baud rate is not supported, then an error will be generated.

example: i. BAUD 2,9600 {set SER2 to 9600 baud}
 ii. BAUD print_speed {set SER1 to ‘print_speed’ baud}

04/23 7

BEEP sound
BEEP activates the inbuilt sound functions of the QL. BEEP can accept a variable number of
parameters to give various levels of control over the sound produced. The minimum
specification requires only a duration and pitch to be specified. BEEP used with no parameters
will kill any sound being generated.

syntax: duration:= numeric_expression {range -32768..32767}
 pitch:= numeric_expression {range 0..255}
 grad_x:= numeric_expression {range -32768..32767}
 grad_y:= numeric_expression {range -8..7}
 wrap:= numeric_expression {range 0..15}
 fuzzy:= numeric_expression {range 0..15}
 random:= numeric_expression {range 0..15}

BEEP [duration, pitch
 [,pitch_2, grad_x, grad_y
 [, wrap
 [, fuzzy
 [, random]]]]]

duration - specifies the duration of the sound in units of 72 microseconds. A
duration of zero will run the sound until terminated by another BEEP
command.

pitch - specifies the pitch of the sound. A pitch of 1 is high and 255 is low.

Pitch_2 - specifies a second pitch level between which the sound will 'bounce'

grad_x - defines the time interval between pitch steps.

grad_y - defines the size of each step, grad_x and grad_y control the rate at
which the pitch bounces between levels.

wrap - will force the sound to wrap around the specified number of times. If
wrap is equal to 15 the sound will wrap around forever:

fuzzy - defines the amount of fuzziness to be added to the sound.

random - defines the amount of randomness to be added to the sound.

BEEPING sound
BEEPING is a function which will return zero (false) if QPC2 is currently not beeping and a
value of one (true) if it is beeping.

syntax: BEEPING

example: 100 DEFine PROCedure be_ quiet
 110 BEEP
 120 END DEFine
 130 IF BEEPING THEN be_ quiet

8 04/23

BELL
EXPLODE, SHOOT programmable sound generator
BELL, EXPLODE, and SHOOT uses the AY-3 sound system to produce descriptive sound
effects.

syntax: BELL
EXPLODE
SHOOT

example: i. BELL
ii. EXPLODE
iii. SHOOT

note: For more information on the AY-3 sound system, see the QPC Concepts document.

BGCOLOUR_QL
BGCOLOUR_24 graphics device 2
BGCOLOUR_QL and BGCOLOUR_24 set the screens background colour. The colour behind
any open windows, To one of the QL compatible colours, or to a plain true colour.

syntax: colour := numeric_expression

BGCOLOUR_QL colour {range 0 … 255}
BGCOLOUR_24 colour {range 0 … 16,777,215}

example: i. BGCOLOUR_QL 255 {set background to black / white check}
ii. BGCOLOUR_QL 0,7 {set background to black / white check}
iii. BGCOLOUR_QL 0,7,3 {set background to black / white check}
iv. BGCOLOUR_24 40 {set the background to deep blue}

comment: You can get stippled extended colours by cheating. Set two of the QL palette entries
(see PALETTE_QL) to the colours you require before calling BGCOLOUR_QL.

04/23 9

BGET, BPUT
WGET, WPUT
LGET, LPUT, UPUT byte input/output
BGET gets 0 or more bytes from the channel. BPUT puts 0 or more bytes into the channel.

For BGET, each item must be a floating point or integer variable; for each variable, a byte is
fetched from the channel. BGET will accept a parameter that is a sub-string of a string array to
get multiple bytes.

For BPUT, each item must evaluate to an integer between 0 and 255; for each item a byte is
sent to the output channel. BPUT will accept string parameters to put multiple bytes.

WGET, WPUT, LGET, and LPUT work like BGET and BPUT, but they always read a word or
long word instead of a byte.

UPUT works as BPUT, but will never translate the character. Very useful to send translated text
to a channel which does use TRA, as well as sending printer control codes using UPUT to the
same channel.

If the position pointer is a floating point variable, rather than an expression. Then, when all items
have been read from, or written to the channel. The pointer will be updated to the new position.

syntax: BGET #channel\ [position] , items {get bytes from a file}
BPUT #channel\ [position] , items {put bytes onto a file}
WGET #channel\ [position] , items {get words from a file}
WPUT #channel\ [position] , items {put words onto a file}
LGET #channel\ [position] , items {get long words from a file}
LPUT #channel\ [position] , items {put long words onto a file}
UPUT #channel\ [position] , items {put bytes onto a file}

example: i. abcd=2.6 : zz%=243
BPUT #3,abcd+1,zz% {will put the byte values 4 and 243 after the current file

 position on the file open on #3}
ii. BPUT #3,27,'R1' {put ESC R1 to channel #3}
iii. DIM a$(10): a$(10)=' '

BGET #3, a$(1 to 6) {get 6 bytes from #3 into a$}

iv. WGET#4\ptr,a {ptr will be incremented by 2}
v. WGET#4\prt+4,a {ptr will not be incremented}

comment: Provided no attempt is made to set a file position, the direct I/O routines can be used
to send unformatted data to devices which are not part of the file system. If, for
example, a channel is opened to an Epson compatible printer (channel #3) then the
printer may be put into condensed underline mode by either

BPUT #3,15,27,45,1
or PRINT #3,CHR$(15);CHR$(27);'-';CHR$(1); {Which is easier?}

10 04/23

BGIMAGE graphics device 2
BGIMAGE will load an image to be used as a background behind any open windows.

syntax: BGIMAGE filename

example: BGIMAGE win1_wallpaper

comment: Background images must be in the form of a screen snapshot. It is relatively simple
to create background images.

500 WINDOW SCR_XLIM, SCR_YLIM, 0, 0 : REMark whole screen window
510 …… draw the wallpaper on the screen
520 SBYTES_0 win1_wallpaper, SCR_BASE, SCR_LLEN * SCR_YSIZE

BIN
BIN$ conversion functions
BIN will convert the supplied binary string into a value. Any character in the string, whose ASCII
value is even, is treated as 0, while any character, whose ASCII value is odd, is treated as 1.
E.g. BIN ('.#.#') returns the value 5. The 'digits' '0' to '9' 'A' to 'F' and 'a' to 'f' have their
conventional meanings.

BIN$ will return a string of sufficient length to represent the value of the specified number of bits
of the least significant end of the value.

syntax: number_of_bits:= numeric_expression

BIN (binary_string)
BIN$ (value, number_of_bits)

example: PRINT BIN (“1010”) {will output 10}
PRINT BIN$ (9 , 8) {will output “00001001”}

BLOCK
WM_BLOCK windows
BLOCK will fill a block of the specified size and shape, at the specified position relative to the
origin of the window attached to the specified, or default channel.

WM_BLOCK will fill a block using one of the Windows Manager colour palettes.

BLOCK and WM_BLOCK use the pixel coordinate system.

syntax: width:= numeric_expression
 height:= numeric_expression
 x:= numeric_expression
 y:= numeric_expression

wm_colour:= numeric_expression {range 0 … 65535}

BLOCK [channel,] width, height, x, y, colour
WM_BLOCK [channel,] width, height, x, y, wm_colour

example: i. BLOCK 10,10,5,5,7 {10x10 pixel white block at 5,5}
ii. WM_BLOCK #4,100, 10, 0, 0, $0202

{100x10 block in window foreground colour}

04/23 11

BORDER
WM_BORDER windows
BORDER will add a border to the window attached to the specified channel, or default channel.

For all subsequent operations except BORDER the window size is reduced to allow space for
the BORDER. If another BORDER command is used then the full size of the original window is
restored prior to the border being added; thus multiple BORDER commands have the effect of
changing the size and colour of a single border. Multiple borders are not created unless specific
action is taken.

If BORDER is used without specifying a colour then a transparent border of the specified width
is created.

WM_BORDER acts as BORDER but will use one of the Windows Manager colour palettes.

syntax: width:= numeric_expression
wm_colour:= numeric_expression {range 0 … 65535}

BORDER [channel,] width [, colour]
WM_BORDER [channel,] width, wm_colour

example: i. BORDER 10,0,7 {black and white stipple border}
 ii. 100 REMark Lurid Borders
 110 FOR thickness = 50 to 2 STEP -2
 120 BORDER thickness, RND(0 TO 255)
 130 END FOR thickness
 140 BORDER 50

iii. WM_BORDER 4, $0216 {create an application window border}

CACHE_OFF
CACHE_ON memory management
There is a cache in QPC2 that can increase performance but it can cause problems with
programs that modify themselves during execution.

syntax: CACHE_OFF
CACHE_ON

comment: There is no way of knowing whether or not a program is self-modifying so try each
program first with the cache off, by typing: CACHE_OFF and then with the cache on,
by typing: CACHE_ON

If the program behaves differently with the cache on, other than going slightly faster,
it is a sign that it is self-modifying and should only be run with the cache off.

12 04/23

CALL machine code
Machine code can be accessed directly from SBASIC by using the CALL command. CALL can
accept up to 13 long word parameters which will be placed into the 68000 data and address
registers (D1 to D7, A0 to A5) in sequence.

No data is returned from CALL.

syntax: address:= numeric_expression
 data:= numeric_expression

CALL address, *[data]* {13 data parameters maximum}

example: i. CALL 262144,0,0,0
 ii. CALL 262500,12,3,4,1212,6

warning: Address register A6 should not be used in routines called using this command. To
return to SBASIC use the instructions:

 MOVEQ #0,D0
 RTS

CD_ALLTIME audio CD player
CD_ALLTIME will return the totally elapsed time of the CD.

syntax: CD_ALLTIME

example: x=CD_ALLTIME

CD_CLOSE
CD_EJECT audio CD player
CD_CLOSE will close the CD drive tray.

CD_EJECT will open the CD drive tray.

syntax: CD_CLOSE
CD_EJECT

CD_FIRSTTRACK
CD_LASTTRACK audio CD player
CD_FIRSTTRACK will return the number of the first track.

CD_LASTTRACK will return the number of the last track.

syntax: CD_FIRSTTRACK
CD_LASTTRACK

example: i. x%=CD_FIRSTTRACK
ii. x%=CD_LASTTRACK

04/23 13

CD_HOUR
CD_MINUTE, CD_SECOND audio CD player
Returns the hour, minute or second of a Redbook address.

syntax: CD_HOUR (numeric_expression)
CD_MINUTE (numeric_expression)
CD_SECOND (numeric_expression)

example: i. h%=CD_HOUR ($000A2002)
ii. m%=CD_MINUTE ($000A2002)
iii. s%=CD_SECOND ($000A2002)

CD_HSG2RED
CD_RED2HSG audio CD player
CD_HSG2RED will convert an HSG address to a Redbook address.

CD_RED2HSG will convert a Redbook address to an HSG address.

syntax: CD_HSG2RED (numeric_expression)
CD_RED2HSG (numeric_expression)

example i. red=CD_HSG2RED ((minute*60+second)*75+frame)
ii. hsg=CD_RED2HSG ($000A2002)

CD_INIT audio CD player
CD_INIT must be used before anything else in order to initialise the CD drive for SMSQ. After
the first call the command is ignored in all subsequent calls. The string parameter is only there
for compatibility with QPC1, it is ignored by QPC2.

syntax: name:= string_expression

CD_INIT [name]

example: CD_INIT

CD_ISPLAYING, CD_ISCLOSED
CD_ISINSERTED, CD_ISPAUSED audio CD player
These function return a binary value indicating the current status according to the keyword.
Please note that Windows cannot tell whether the tray is closed or not, therefore
CD_ISCLOSED always returns the same result as CD_ISINSERTED when used on QPC2. An
empty tray is obviously something the Microsoft geniuses could not imagine.

syntax: CD_ISPLAYING
CD_ISCLOSED
CD_ISINSERTED
CD_ISPAUSED

example: i. x%=CD_ISPLAYING
ii. PRINT CD_ISCLOSED
iii. inserted%=CD_ISINSERTED
iv. playing%=CD_ISPAUSED

14 04/23

CD_LENGTH audio CD player
CD_LENGTH will return the total length of the CD.

syntax: CD_LENGTH

example: x=CD_LENGTH

CD_PLAY audio CD player
CD_PLAY will begin playing the audio CD. Without parameters the whole CD is played. An
optional start and end track can be given. The command returns immediately when the CD
starts playing. The parameters are given in tracks (bit 31 clear) or in sector units (bit 31 set).

syntax: start:= numeric_expression
end:= numeric_expression

CD_PLAY [start[,end]]

example: i. CD_PLAY 3 {start playing from track 3}
CD_PLAY CD_TRACKSTART(3) + $80000000 {same as above}

CD_RESUME audio CD player
CD_RESUME will resume the playing of a paused audio CD.

syntax: CD_RESUME

CD_STOP audio CD player
CD_STOP will pause playing. If the driver was already in pause mode, a complete stop is
performed (as if a new CD was inserted, restart from track 1 and so on)

syntax: CD_STOP

CD_TRACK audio CD player
CD_TRACK will return the number of the track which is currently being played.

syntax: CD_TRACK

example: track%=CD_TRACK

CD_TRACKLENGTH audio CD player
CD_TRACKLENGTH will return the length of a track.

syntax: track:= numeric_expression

CD_TRACKLENGTH (track)

example: x=CD_TRACKLENGTH (4) {get the length of track 4}

comment: This is the only function that returns an HSG-number.

04/23 15

CD_TRACKTIME audio CD player
CD_TRACKTIME will return the number of the track which is currently being played.

syntax: CD_TRACKTIME

example: PRINT CD_TRACKTIME

CD_TRACKSTART audio CD player
CD_TRACKSTART will return the start sector of a track.

syntax: track:= numeric_expression

CD_TRACKSTART (track)

example: x=CD_TRACKSTART (4) {get the start sector of track 4}

CHAR_DEF windows
The QPC2 display driver has two character founts built in. The first provides patterns for the
values 32 (space) to 127 (copyright), while the second provides patterns for the values 127
(undefined) to 191 (down arrow). For each character the display driver will use the appropriate
pattern from the first fount, if there is one, failing that, it will use the appropriate pattern from the
second fount, failing that, it will use the first defined pattern in the second fount.

The command CHAR_DEF is used to set or reset one or both character founts.

Setting a fount address to zero will force the built in founts to be used.

All windows which are opened after using CHAR_DEF now will use the new system fonts
(except if they define their own fonts, of course).

Channels already open will not use the new fonts automatically for various reasons: the most
obvious is, that if the font file did not contain any font data, you will not be able to correct this as
all characters printed will look like complete rubbish.

To change the fonts on channels already open use the CHAR_USE command.

syntax: CHAR_DEF font1, font2

example: i. CHAR_DEF addr1, addr2 {use the substitute founts at, addr1
 and addr2}

ii. CHAR_DEF 0, addr2 {the built in first fount will be used,
 addr2 points to a substitute second
 fount}

iii. CHAR_DEF 0,0 {reset both founts for window #1}

16 04/23

CHAR_INC windows
CHAR_INC will set the character and line spacing for the specified or default window.

The QPC2 display driver assumes that all characters are 5 pixels wide by 9 pixels high. Other
sizes are obtained by doubling the pixels or by adding blank pixels between characters. It is
possible, to set any horizontal and vertical spacing. If the increment is set to less than the
current character size (set by CSIZE) then extreme caution is required as it will be possible for
the display driver to write characters (at the right hand side or bottom of the window) partly
outside the window. The windows should not come closer to the bottom or right hand edges of
the screen than the amount by which the increment specified is smaller than the character
spacing set by CSIZE.

syntax: x_inc:= numeric_expression
y_inc:= numeric_expression

CHAR_INC [#channel,] x_inc, y_inc

example: If there is a 3x6 character fount in a file called 'f3x6' (length 875 bytes), then a 127
column by 36 row screen can be set up:

10 WINDOW 512-2,256-3,0,0 :REMark clear of edges of screen
20 CSIZE 0,0 :REMark spacing 6x10
30 CHAR_INC 4,7 :REMark spacing 4x7

:
70 fount = ALCHP (875) :REMark reserve space for fount
80 LBYTES f3x6, fount :REMark load fount
90 CHAR_USE fount,0 :REMark single fount only

comment: The character increments specified are cancelled by a CSIZE command.

CHAR_USE windows
The QPC2 display driver has two character founts built in. The first provides patterns for the
values 32 (space) to 127 (copyright), while the second provides patterns for the values 127
(undefined) to 191 (down arrow). For each character the display driver will use the appropriate
pattern from the first fount, if there is one, failing that, it will use the appropriate pattern from the
second fount, failing that, it will use the first defined pattern in the second fount.

The command CHAR_USE is used to set or reset one or both character founts.

Setting a fount address to zero will force the built in founts to be used.

syntax: CHAR_USE [#channel,] address1, address2

example: i. CHAR_USE #3, addr1, addr2 {the window attached to channel 3, will
 use the substitute founts at, addr1 and
 addr2}

ii. CHAR_USE #2, 0, addr2 {in window 2, the built in first fount will
 be used, addr2 points to a substitute
 second fount}

iii. CHAR_USE 0,0 {reset both founts for window #1}

CHK_HEAP
Undocumented command.

Believed to be used to check whether the heap has become corrupted.

The SMSQ/E source code refers to it as a ‘heap checking patch’

04/23 17

CHR$ SBASIC
CHR$ is a function which will return the character whose value is specified as a parameter:
CHR$ is the inverse of CODE.

syntax: CHR$(numeric_expressen)

example: i. PRINT CHR$(27) {print ASCII escape character}
 ii. PRINT CHR$(65) {print A}

CIRCLE, CIRCLE_R
ELLIPSE, ELLIPSE_R graphics
CIRCLE will draw a circle (or an ellipse at a specified angle) on the screen at a specified
position and size. The circle will be drawn in the window attached to the specified or default
channel.

CIRCLE uses the graphics coordinate system and can use absolute coordinates (i.e. relative to
the graphics origin), and relative coordinates (i.e. relative to the graphics cursor). For relative
coordinates use CIRCLE_R.

Multiple circles or ellipses can be plotted with a single call to CIRCLE. Each set of parameters
must be separated from each other with a semi colon (;)

The word ELLIPSE can be substituted for CIRCLE if required.

syntax: x:= numeric_expression
 y:= numeric_expession
 radius:= numeric_expression
 eccentricity:= numeric_expression
 angle:= numeric_expression {range 0..2PI}

 parameters:= | x, y, (1)
 | radius, eccentricity, angle (2)

where (1) will draw a circle
 (2) will draw an ellipse of specified eccentricity and angle

CIRCLE [channel,] parameters*[; parameters]*

x - horizontal offset from the graphics origin or graphics cursor
y - vertical offset from the graphics origin or graphics cursor
radius - radius of the circle eccentricity the ratio between the major and minor

axes of an ellipse.
Angle - the orientation of the major axis of the ellipse relative to the screen

vertical. The angle must be specified in radians.

example: i. CIRCLE 50,50,20 {a circle at 50,50 radius 20}
 ii. CIRCLE 50,50,20,0.5,0 {an ellipse at 50,50 major axis 20 eccentricity 0.5 and

 aligned with the vertical axis}

CKEYOFF
CKEYON pointer interface
CKEYOFF will disable the use of the cursor keys to move the pointer around the screen.

CKEYON will re-enable the use of the cursor keys to move the pointer around the screen.

syntax: CKEYOFF
CKEYON

18 04/23

CLCHP memory management
CLCHP will release all space in the ‘common heap’ which has been allocated with ALCHP.

syntax: CLCHP

comment: CLEAR and NEW will also release all space allocated in the common heap.

CLEAR SBASIC
CLEAR will clear out the SBASIC variable area for the current program and will release the
space for SMSQ/E.

syntax: CLEAR

example: CLEAR

comment: CLEAR can be used to restore to a known state the SBASIC system. For example, if
a program is broken into (or stops due to an error) while it is in a procedure then
SBASIC is still in the procedure even after the program has stopped. CLEAR will
reset the SBASIC. {See CONTINUE, RETRY.}

CLOCK timekeeping
CLOCK is a procedure to set up a resident digital clock using the QPC2's system clock. If no
window is specified, then a default window is set up in the top RHS of the monitor mode default
channel 0. This window is 60 by 20 pixels. The clock may be invoked to execute within a
window set up by SBASIC. In this case the clock job will be removed when the window is
closed.

syntax: CLOCK [#channel,] [string]

The string is used to define the characters written to the clock window: any character may be
written except $ or %. If a dollar sign is found in the string then the next character is checked
and

$d or $D will insert the three characters of the day of week,
$m or $M will insert the three characters of the month.

If a percentage sign is found then

%y or %Y will insert the two digit year
%d or %D will insert the two digit day of month
%h or %H will insert the two digit hour
%m or %M will insert the two digit minute
%s or %S will insert the two digit second

The default string is '$d %d $m %h/%m/%s ' a newline should be forced by padding out a line
with spaces until the right hand margin of the window is reached.

example: 10 OPEN #6,'scr_156x10a32x16'
20 INK #6,0: PAPER #6,4
30 CLOCK #6,'QPC time %h:%m'

04/23 19

CLOSE devices
CLOSE will close all channel numbers #3 and above, or the specified channels. Any window
associated with the channel will be deactivated.

It will not report an error if a channel is not open.

syntax: channel:= numeric_expression

 CLOSE [*channel, *]

example: i. CLOSE #4
 ii. CLOSE #input_ channel

iii. CLOSE #3, #4, #7 {close channels #3, #4 and #7}

CLS windows
Will clear the window attached to the specified or default channel to the current PAPER colour,
excluding the border if one has been specified. CLS will accept an optional parameter which
specifies if only a part of the window must be cleared.

syntax: part:= numeric_expression

 CLS [channel,] [part]

where: part = 0 - whole screen (default if no parameter)
 part = 1 - top excluding the cursor line
 part = 2 - bottom excluding the cursor line
 part = 3 - whole of the cursor line
 part = 4 - right end of cursor line including the cursor position

example: i. CLS {the whole window}
 ii. CLS 3 {clear the cursor line}
 iii. CLS #2,2 {clear the bottom of the window on channel 2}

CODE SBASIC
CODE is a function which returns the internal code used to represent the specified character. If
a string is specified then CODE will return the internal representation of the first character of the
string.

CODE is the inverse of CHR$.

syntax: CODE (string_expression)

example: i. PRINT CODE("A") {prints 65}
 ii. PRINT CODE ("SBASIC") {prints 83}

20 04/23

COLOUR_NATIVE, COLOUR_PAL
COLOUR_QL, COLOUR_24 graphics device 2
COLOUR_NATIVE, COLOUR_PAL, COLOUR_QL, and COLOUR_24 will select the colour
definition used by INK, PAPER, STRIP, BORDER, and BLOCK.

COLOUR_QL selects the standard QL colour definitions (the QL colours can be mapped to
colours other than the standard black, blue, red, magenta, green, cyan, yellow and white).
This is the default colour scheme for SBASIC and it's daughter jobs.

COLOUR_PAL selects the 256 colour palette mapped definition.

COLOUR_24 selects the true colour (24 bit) definition.

COLOUR_NATIVE selects the native colour definition - the significance of the colour numbers
specified by INK, PAPER, etc. depends on the hardware.

syntax: COLOUR_QL
COLOUR_PAL
COLOUR_24
COLOUR_NATIVE

example: 200 COLOUR_24 {select true colour mode}
210 BORDER 2, 128*65536 + 128*256 +128 {grey border}
220 BORDER 2,$808080 {grey border for hexadecimal hackers}

comment: The commands have no effect on any other programs executing. When an SBASIC
program starts executing, it is set to QL colour definition.

CONTINUE
RETRY error handling
CONTINUE allows a program which has been halted to be continued. RETRY allows a program
statement which has reported an error to be re-executed.

As the RETRY and CONTINUE exit from an error clause without resetting the WHEN ERROR,
they can also be used to exit to a different part of the program via an optional line number.

syntax: line_number:= numeric_expression
CONTINUE [line_number]
RETRY [line_number]

example: CONTINUE
 RETRY 1040

warning: A program can only continue if:

1. No new lines have been added to the program
 2. No new variables have been added to the program

3. No lines have been changed

The value of variables may be set or changed.

04/23 21

COPY
COPY_N devices
COPY will copy a file from an input device to an output device until an end of file marker is
detected. COPY_N will not copy the header (if it exists) associated with a file and will allow Disk
files to be correctly copied to another type of device.

Headers are associated with directory-type devices and should be removed using COPY_N
when copying to non-directory devices, e.g. flp1 is a directory device; ser1 is a non-directory
device.

syntax: COPY device TO device
 COPY_N device TO device

It must be possible to input from the source device and it must be possible to output
to the destination device.

example: i. COPY flp1_data_file TO con_ {copy to default window}
 ii. COPY neti_3 TO flp1_data {copy data from network station to

 flp_data.}
iii. COPY_N flp1_test_data TO ser1_ {copy mdvl_test_data to serial

 port 1 removing header information}

COPY_O
COPY_H
WCOPY devices
Files in SMSQ/E have headers which provide useful information about the file that follows. It
depends on the circumstances whether it is a good idea to copy the header of a file when the
file is copied.

It is a good idea to copy the header when:

a) copying an executable program file so that the additional file information is
preserved,

b) copying a file over a pure byte serial link so that the communications software will
know in advance the length of the file.

It is a bad idea to copy the header when:

c) copying a text file to a printer because the header will be likely to have control
codes and spurious or unprintable characters.

The general rules used by the COPY procedures in SMSQ/E, are that the header is only copied
if there is additional information in the header. This caters for cases (a) and (c) above. A
COPY_N command is included for compatibility with the standard QL COPY_N: this never
copies the header. A COPY_H command is included to copy a file with the header to cater for
case (b) above. (Note that the standard QL command COPY always copies the header.) Neither
COPY_N nor COPY_H need ever be used for file to file copying.

A second general rule used by the COPY (as well as by the WREN) procedures is that if the
destination file already exists, then the user will be asked to confirm that overwriting the old file
is acceptable. The COPY_O (copy overwrite) and the spooler procedures do not extend this
courtesy to the user.

If the commands are given with two filenames then the data default directory is used for both
files. If, however, only one filename (or, in the case of the wild card procedures, no name at all)
is given then the destination will be derived from the destination default:

22 04/23

a) if the destination default is a directory (ending with '_', set by DEST_USE) then the
destination file is the destination default followed by the name,

b) if the destination default is a device (not ending with '_', set by SPL_USE) then
the destination is the destination default unmodified.

syntax: COPY name TO name {copy a file}
COPY_O name TO name {copy a file (overwriting)}
COPY_N name TO name {copy a file (without header)}
COPY_H name TO name {copy a file (with header)}

These commands can be given with one or two names. The separator 'TO' is used for clarity,
you may use a comma instead.

To illustrate the use of the copy command, assume that the data default is FLP2_ and the
destination default is FLP1_.

example: i. COPY fred TO old_fred {copies flp2_fred to flp2_old_fred}
ii. COPY fred, ser {copies flp2_fred to ser}
iii. COPY fred {copies flp2_fred to flp1_fred}
iv. SPL_USE ser

....
COPY fred {copies flp2_fred to ser}

The interactive copying procedure WCOPY is used for copying all or selected parts of
directories. The command may be given with both source and destination wild card names, with
one wild card name or with no wild card names at all. Giving the command with no wild card
names has the same effect as giving one null name:

 WCOPY and WCOPY '' are the same.

If you get confused by the following rules about the derivation of the copy destination, just use
WCOPY intuitively and look carefully at the prompts.

If the destination is not the destination default device, then the actual destination file name for
each copy operation is made up from the actual source file name and the destination wild name.
If a missing section of the source wild name is matched by a missing section of the destination
wild name, then that part of the actual source file name will be used as the corresponding part of
the actual destination name. Otherwise the actual destination file name is taken from the
destination wild name. If there are more sections in the destination wild name than in the source
wild name, then these extra sections will be inserted after the drive name, and vice versa.

syntax: WCOPY [#channel,] name TO name

The separator TO is used for clarity, you may use a comma instead.

If the channel is not given (i.e. most of the time), then the requests for confirmation will be sent
to the command channel #0. Otherwise confirmation will be sent to the chosen channel, and the
user is requested to press one of:

Y (yes) copy this file
N (no) do not copy this file
A (all) copy this and all the next matching files.
Q (quit) do not copy this or any other files

If the destination file already exists, the user is requested to press one of:

Y (yes) copy this file, overwriting the old file
N (no) do not copy this file
A (all) overwrite the old file, and overwrite any other files requested to be

copied.
Q (quit) do not copy this or any other files

04/23 23

example: If the default data directory is flp2_, and the default destination is flp1_

i. WCOPY {would copy all files on flp2_ to flp1_}

ii. WCOPY flp1_,flp2_ {would copy all files on flp1_ to flp2_}

iii. WCOPY fred {would copy flp2_fred to flp1_fred
 flp2_freda_list to flp1_freda_list}

iv. WCOPY fred,mog {would copy flp2_fred to flp2_mog
 flp2_freda_list to flp2_moga_list}

v. WCOPY _fred,_mog {would copy flp2_fred to flp2_mog
 flp2_freda_list to flp2_moga_list
 flp2_old_fred to flp2_old_mog
 flp2_old_freda_list to flp2_old_moga_list}

vi. WCOPY _list,old__ {would copy flp2_jo_list to flp2_old_jo_list
 flp2_freda_list to flp2_old_freda_list}

vii. WCOPY old__list,flp1__ {would copy flp2_old_jo_list to flp1_jo_list
 flp2_old_freda_list to flp1_freda_list}

COS math functions
COS will compute the cosine of the specified argument.

syntax: angle:= numeric_expression {range -10000..10000 in radians}

 COS (angle)

example: i. PRINT COS(theta)
 ii. PRINT C0S(3.141592654/2)

COT maths functions
COT will compute the cotangent of the specified argument.

syntax: angle:= numeric_expression {range -30000..30000 in radians}

COT (angle)

example: i. PRINT COT(3)
 ii. PRINT C0T(3.141592654/2)

24 04/23

CSIZE window
Sets a new character size for the window attached to the specified or default channel.

The standard size in 512 x 256 QL colour mode is, 0,0 in 512 mode and 2,0 in 256 mode.

In other screen resolutions the standard size 0,0.

Width defines the horizontal size of the character space. Height defines the vertical size of the
character space. The character size is adjusted to fill the space available.

width size height size

0 6 pixels 0 10 pixels
1 8 pixels 1 20 pixels
2 12 pixels
3 16 pixels

syntax: width:= numeric_expression {range 0..3}
 height:= numeric_expression {range 0..1}

 CSIZE [channel,] width, height

example: i. CSIZE 3,0
 ii. CSIZE 3,1

CURSEN
CURDIS windows
The function INKEY$ is designed so that keystrokes may be read from the keyboard without
enabling the cursor. Two procedures are supplied to enable and disable the cursor. When the
cursor is enabled, it will usually appear solid (inactive). The cursor will start to flash (active)
when the keyboard queue has been switched to the window with the cursor (e.g. by an
INKEY$).

syntax: CURSEN [#channel] {enable the cursor}
CURDIS [#channel] {disable the cursor}

example: 10 CURSEN {enable the cursor in window #1}
20 in$=INKEY$ (#1,250) {wait for up to 5 seconds for a character

 from the keyboard. If nothing is typed within
 the 5 seconds, then in$ will be set to a null
 string ("")}

30 CURDIS

comment: Note that while CURSEN and CURDIS default to channel #1, like most I/O
commands, INKEY$ defaults to channel #0.

04/23 25

CURSOR windows
CURSOR allows the screen cursor to be positioned anywhere in the window attached to the
specified or default channel.

CURSOR uses the pixel coordinate system relative to the window origin and defines the
position for the top left hand corner of the cursor. The size of the cursor is dependent on the
character size in use.

If CURSOR is used with four parameters then the first pair is interpreted as graphics
coordinates (using the graphics coordinate system) and the second pair as the position of the
cursor (in the pixel coordinate system) relative to the first point.

This allows diagrams to be annotated relatively easily.

syntax: x:= numeric_expression
 y:= numeric_expression

CURSOR [channel,] x, y [,x, y]

example: i. CURSOR 0,0
 ii. CURSOR 20,30
 iii. CURSOR 50,50,10,10

CURSPRLOAD window manager
CURSPRLOAD will load a new system cursor sprite into memory ready to be activated by a
CURSPRON command.

The cursor sprite must –

i. Have a size of 6 X 10.
ii. Set at position 36 in the system sprites.
iii. Showable in the current screen resolution.

If any of the above conditions are not met then a normal cursor will be shown.

syntax: CURSPRLOAD device

example: CURSPRLOAD flp1_new_spr

CURSPROFF
CURSPRON window manager
CURSPRON and CURSPROFF enable and disable the use of a sprite to replace the cursor in a
window.

To use a new cursor sprite, it has to be first loaded into SBASIC with a CURSPRLOAD
command.

syntax: job_identifier:= | job_number , tag_number
| job_number + (tag_number * 65536)

id:= job_identifier

CURSPRON id
CURSPROFF id

example: i. 10 CURSPRLOAD flp1_newCursor_spr {load new sprite}

20 CURSPRON 0 {enable new sprite in job 0}
ii. CURSPRON “xchange” {enable new cursor in job ‘xchange’}
iii. CURSPROFF -1 {sets this job to a normal cursor}

26 04/23

DATA
READ
RESTORE SBASIC
READ, DATA and RESTORE allow embedded data, contained in a SBASIC program, to be
assigned to variables at run time.

DATA is used to mark and define the data, READ accesses the data and assigns it to variables
and RESTORE allows specific data to be selected.

DATA allows data to be defined within a program. The data can be read by a READ
statement and the data assigned to variables. A DATA statement is ignored by
SBASIC when it is encountered during normal processing.

syntax: DATA *[expression,]*

READ reads data contained in DATA statements and assigns it to a list of variables.
Initially the data pointer is set to the first DATA statement in the program and is
incremented after each READ. Re-running the program will not reset the data
pointer and so in general a program should contain an explicit RESTORE.

An error is reported if a READ is attempted for which there is no DATA.

syntax: READ *[identifier,l*

RESTORE restores the data pointer, i.e. the position from which subsequent READs will
read their data. If RESTORE is followed by a line number then the data pointer is
set to that line. If no parameter is specified then the data pointer is reset to the
start of the program.

syntax: RESTORE [line_number]

example: i. 100 REMark Data statement example
 110 DIM weekdays$(7,4)
 120 RESTORE
 130 FOR count= 1 TO 7 : READ weekdays$(count)
 140 PRINT weekday$
 150 DATA "MON","TUE","WED","THUR","FRI"
 160 DATA "SAT","SUN"

ii. 100 DIM month$(12,9)
 110 RESTORE
 120 REMark Data statement example
 130 FOR count=1 TO 12 : READ month$(count)
 140 PRINT month$
 150 DATA "January", "February", "March"
 160 DATA "April","May","June"
 170 DATA "July","August","September"
 180 DATA "October","November","December"

warning: An implicit RESTORE is not performed before running a program. This allows a
single program to run with different sets of data. Either include a RESTORE in the
program or perform an explicit RESTORE or CLEAR before running the program.

04/23 27

DATAD$
PROGD$
DESTD$ defaults functions
DATAD$, PROGD$, and DESTD$ are functions to find the current data, program, and
destination defaults.

syntax: DATAD$ {find the data default}
PROGD$ {find the program default}
DESTD$ {find the destination default}

comment: The functions to find the individual defaults should be used without any parameters.

example: i. IF DATAD$<>PROGD$: PRINT 'Separate directories'

ii. DEST$=DESTD$
IF DEST$ (LEN (DEST$)) = '_': PRINT 'Destination'! DEST$

DATA_USE data default
DATA_USE is used to set a default, which is added to most of the filing system commands. If
you do not supply a complete SMSQ/E filename in the command, the DATA_USE default will
be added to the beginning of the supplied filename.

If the supplied filename is not found in the system, Then the DATA_USE default will be added
to the beginning of the supplied filename, and another attempt will be made to execute the
command.

syntax: directory_name:= device*[subdirectory_]*

DATA_USE directory_name

example: 100 DATA_USE win1_programs_
110 DIR {Gives a directory of “win1_programs_”}
120 LOAD draw {Loads the program “win1_programs_draw}

comment: If the directory name supplied does not end with '_', '_' will be appended to the
directory name.

28 04/23

DATE$
DATE clock
DATE$ is a function which will return the date and time contained in the QPC2’s clock. The
format of the string returned by DATE$ is:

"yyyy mmm dd hh:mm:ss"

where yyyy is the year 1984, 1985, etc
 mmm is the month Jan, Feb etc
 dd is the day 01 to 28, 29, 30, 31
 hh is the hour 00 to 23
 mm are the minutes 00 to 59
 ss are the seconds 00 to 59

DATE will return the date as a floating point number which can be used to store dates and times
in a compact form.

If DATE$ is used with a numeric parameter then the parameter will be interpreted as a date in
floating point form and will be converted to a date string.

syntax: DATE$ {get the time from the clock)
 DATE$ (numeric_expression) {get time from supplied parameter}

DATE [(yyyy,m,d,h,m,s)]

example: i. PRINT DATE$ {output the date and time}
 ii. PRINT DATE$(234567) {convert 234567 to a date}

iii. PRINT DATE {output today’s date as a floating point number}
iv. PRINT DATE (2002,7,23,10,32,15)

{output 23rd July 2002 at 10:32:15 as a floating point number}

DAY$ clock
DAY$ is a function which will return the current day of the week. If a parameter is specified then
DAY$ will interpret the parameter as a date and will return the corresponding day of the week.

syntax: DAY$ {get day from clock}
 DAY$ (numeric_expression) {get day from supplied parameter}

example: i. PRINT DAY$ {output the day}
 ii. PRINT DAY$(234567) {output the day represented by 234567

 (seconds)}

04/23 29

DDOWN
DUP
DNEXT directory navigation
These three commands are provided to move through a directory tree.

DDOWN moves down through the directory tree, DUP move up through the directory tree, and
DNEXT moves up and then down a different branch of the tree.

It is not possible to move up beyond the drive name using the DUP command. At no time is the
default name length allowed to exceed 32 characters.

These commands operate on the data default directory. By appending directories onto the end
of, or stripping directories off of the end of the default. Under certain conditions they may
operate on the other defaults as well:

If the program default is the same as the data default, then the two defaults are linked and these
commands will operate on the PROG_USE default as well.

If the destination default ends with '_' (i.e. it is a default directory rather than a default device),
then these commands will operate on the destination default.

syntax: DDOWN name
DUP
DNEXT name

example:

defaults data program destination
initial values flp2_ flp1_ ser

DDOWN john flp2_john_ flp1_ ser
DNEXT fred flp2_fred_ flp1_ ser
PROG_USE flp2_fred flp2_fred_ flp2_fred_ ser
DNEXT john flp2_john_ flp2_john_ ser
DUP flp2_ flp2_ ser
DEST_USE flp1 flp2_ flp2_ flp1_
DDOWN john flp2_john_ flp2_john_ flp1_john_
SPL_USE ser1c flp2_john_ flp2_john_ ser1c

30 04/23

DEFine
FuNction
END DEFine functions and procedures
DEFine FuNction defines a SBASIC function. The sequence of statements between the
DEFine function and the END DEFine constitute the function. The function definition may also
include a list of formal parameters which will supply data for the function. Both the formal and
actual parameters must be enclosed in brackets. If the function requires no parameters then
there is no need to specify an empty set of brackets.

Formal parameters take their type and characteristics from the corresponding actual
parameters. The type of data returned by the function is indicated by the type appended to the
function identifier. The type of the data returned in the RETURN statement must match.

An answer is returned from a function by appending an expression to a RETurn statement. The
type of the returned data is the same as type of this expression.

A function is activated by including its name in a SBASIC expression.

Function calls in SBASIC can be recursive; that is, a function may call itself directly or indirectly
via a sequence of other calls.

syntax: formal_parameters= (expression *[, expression]*)
 actual_parameters:= (expression *[, expression]*)

type:= | $
 | %
 |

 DEF FuNction identifier type {formal_parameters}
 [LOCal identifier *[, identifier]*]
 statements
 RETurn expression
END DEFine [identifier type]

RETurn can be at any position within the procedure body. LOCal statements must
precede the first executable statement in the function.

example: 10 DEFine FuNction mean(a, b, c)
 20 LOCaL answer
 30 LET answer = (a + b + c)/3
 40 RETurn answer
 50 END DEFine mean
 60 PRINT mean(1,2,3)

comment: To improve legibility of programs the name of the function can be appended to
the END DEFine statement. However, the name will not be checked by SBASIC.

04/23 31

DEFine
PROCedure
END DEFine functions and procedures
DEFine PROCedure defines a SBASIC procedure. The sequence of statements between the
DEFine PROCedure statement and the END DEFine statement constitutes the procedure. The
procedure definition may also include a list of formal parameters which will supply data for the
procedure. The formal parameters must be enclosed in brackets for the procedure definition, but
the brackets are not necessary when the procedure is called. If the procedure requires no
parameters then there is no need to include an empty set of brackets in the procedure definition.

Formal parameters take their type and characteristics from the corresponding actual
parameters.

Variables may be defined to be LOCal to a procedure. Local variables have no effect on
similarly named variables outside the procedure. If required, local arrays should be dimensioned
within the LOCal statement.

The procedure is called by entering its name as the first item in a SBASIC statement together
with a list of actual parameters. Procedure calls in SBASIC are recursive that is, a procedure
may call itself directly or indirectly via a sequence of other calls.

It is possible to regard a procedure definition as a command definition in SBASIC; many of the
system commands are themselves defined as procedures.

syntax: formal_parameter:= (expression *[, expression]*)
 actual_parameters:= expression *[, expression]*

 DEFine PROCedure identifier [formal_parameters]
 [LOCal identifier *[, identifier]*]
 statements
 [RETurn]
 END DEFine [identifier]

RETURN can appear at any position within the procedure body. If present the LOCal
statement must be before the first executable statement in the procedure. The END
DEFine statement will act as an automatic return.

example: i. 100 DEFine PROCedure start_screen
 110 WINDOW 100,100,10,10
 120 PAPER 7 : INK O : CLS
 130 BORDER 4,255
 140 PRINT "Hello Everybody"
 150 END DEFine
 160 start_screen

ii. 100 DEFine PROCedure slow_scroll(scroll_limit)
 110 LOCal count
 120 FOR count =1 TO scroll
 130 SCROLL 2
 140 END FOR count
 150 END DEFine slow_scroll
 160 slow_scroll 20

comment: To improve legibility of programs the name of the procedure can be appended to
the END DEFine statement. However, the name will not be checked by SBASIC.

32 04/23

DEG maths functions
DEG is a function which will convert an angle expressed in radians to an angle expressed in
degrees.

syntax: DEG(numeric_expression)

example: PRINT DEG(PI/2) {will print 90}

DELETE
WDEL directory devices
DELETE will remove a file from the directory of the directory device specified.

WDEL will remove multiple files from the directory of the directory device specified, using wild
card names.

No error is generated if the file is not found.

syntax: DELETE name {delete one file}
WDEL [#channel,] name {delete files}

example: i. DELETE flp1_old_data
ii. DELETE win1_letter_file

For WDEL both the channel and the name are optional.

iii. WDEL {delete files from current directory}
iv. WDEL _list {delete all _list files from current directory}

comment: Unless a channel is specified, the wild card deletion procedures use the command
window #0 to request confirmation of deletion. There are four possible replies:

Y (yes) delete this file
N (no) do not delete this file
A (all) delete this and all the next matching files
Q (quit) do not delete this or any of the next files

DEL_DEFB memory management
DEL_DEFB will delete file definition blocks from the common heap.

Making large allocations in the common heap and then accessing a drive for the first time. Can
cause a terrible heap disease called 'large scale fragmentation' where the drive definition blocks
become widely scattered in the heap leaving large holes that cease to be available except as
heap entries (i.e. you cannot load programs into them). A simple but dangerous cure is to delete
the drive definition blocks.

syntax: DEL_DEFB

comment: Although there are precautions within the procedure DEL_DEFB to minimise

damage, care should be taken to avoid using this command while any directory
device is active.

04/23 33

DEST_USE destination default
DEST_USE is used to set a default, which is used to find the destination filename when the file
copying and renaming commands (SPL, COPY, RENAME etc.) are used with only one
filename.

If the supplied filename is not found in the system, Then the DEST_USE default will be added to
the beginning of the supplied filename, and another attempt will be made to execute the
command.

syntax: directory_name:= device*[subdirectory_]*

DEST_USE directory_name

example: 100 DEST_USE win1_programs_
110 COPY flp1_john TO fred {Copies the file “flp1_john” to the file

 “win1_programs_fred”}

comment: There is a special form of the DEST_USE command which does not append '_' to
the name given. Notionally this provides the default destination device for the
spooler. See SPL_USE.

DEVTYPE devices
DEVTYPE returns a value indicating whether the specified or default channel is open to a
window, or to a file.

Only the most significant bit, and the two least significant bits should be tested. All other bits are
unidentified. The value returned is negative if the channel is not open. Bit 0 indicates that the
channel is open to a window, Bit 1 indicates that the channel is open to a file.

The values returned in the two least significant bits are –

0 - Purely serial device
1 - Window
2 - Direct access file

syntax: DEVTYPE [(# channel)]

example: i. PRINT DEVTYPE
ii. PRINT DEVTYPE (#4)
iii. PRINT 3 && DEVTYPE(#6)
iv. IF DEVTYPE(#4) < 0 then PRINT "Channel is closed"

DEV_LIST, DEV_USE$ devices
DEV_LIST is a command to list to the specified or default channel the DEV device allocations.

DEV_USE$ returns the DEV device usage for the supplied DEV device number.

syntax: device := numeric_expression

DEV_LIST [#channel]
DEV_USE$ (device)
DEV_NEXT$ (device)

example: i. DEV_LIST#3 {Lists current DEV’s to #3}
ii. PRINT DEV_USE$(3) {Prints the usage for DEV3_}

34 04/23

DEV_NEXT directory devices
DEV_NEXT returns the next DEV after the specified DEV.

syntax: DEV_NEXT (numeric_expression)

example: PRINT DEV_NEXT(1) {prints the next DEV In the chain after DEV1}

DEV_USEN directory devices
DEV_USEN allows renaming of the DEV device. Both DEV_USE or DEV_USEN with one
parameter will rename the DEV device, DEV_USEN without parameter will reset the name of
DEV back to DEV.

syntax: DEV_USEN [name]

example: i. DEV _USEN mdv {DEV is now called MDV}
ii. DEV _USEN {and now its name is DEV again}

DEV_USE directory devices
DEV_USE allows you to attach a DEV device to a real directory.

There is a variation on the DEV_USE call which enables the setting up of default chains. If you
put another number at the end of the DEV_USE command it will be taken as the DEV to try if
the open fails. This next DEV can also chain to another DEV. The DEV driver stops chaining
when all DEV’s in the chain have been tried.

syntax: DEV_USE [device_number , real_directory [,chain] | device]

example: i. DEV_USE 1,ram1_ {dev1_ is equivalent to ram1_}
ii. DEV_USE 2,flp1_letters_ {dev2_ is equivalent to flp1_letters_}
iii. DEV_USE 3,win1_work_new_ {dev3_ is equivalent to win1_work_new}
iv. DEV_USE 4, ram2_,5 {dev4_ is equivalent to ram2_}
v. DEV_USE 5,flp1_latest_,6 {dev5_ is equivalent to flp1_latest_
vi. DEV_USE 6,win1_work_,4 {dev6_ is equivalent to win1_work_}

comment: Unlike PROG_USE and DATA_USE, the underscore at the end is significant. Thus,
entering the above commands.

OPEN#3,dev1_f1 Opens “ram1_f1”
OPEN#3,dev2_bankmanager Opens “flp1_letters_bankmanager”
OPEN#3,dev3_f1 Opens “win1_work_newf1”
DELETE dev3__junk Deletes “win1_work_new_junk”
LOAD dev4_prog_bas Tries “ram2_prog_bas”, then “flp1_latest_

prog_bas”, and then finally “win1_work_prog_
bas”

LOAD dev5_DiskCheck Tries “flp1_latest_DiskCheck”, then “win1_
work_DiskCheck”, and finally “ram2_
DiskCheck”

DELETE does not chain with DEV.

The DEV name can be changed by specifying a three letter name of string.

DEV_USE without any parameters will reset the name to DEV.

DEV_USE 1,flp2_myprogs_ “dev1_” is “myprogs_ “on drive 2}
DEV_USE 2,flp1_ex_,1 “dev2_” is “flp1_ex_”, or “flp2_myprogs_”
DEV_USE flp “flp1_ “is now really “flp2_myprogs_and “flp2_“

 is “flp1_ex_”}
DEV_USE “flp1_” is now “flp1_” again

04/23 35

DIM arrays
Defines an array to SBASIC. String, integer and floating point arrays can be defined. String
arrays handle fixed length strings and the final index is taken to be the string length.

Array indices run from 0 up to the maximum index specified in the DIM statement; thus DIM will
generate an array with one more element in each dimension than is actually specified.

When an array is specified it is initialised to zero for a numeric array and zero length strings for
a string array.

syntax: index:= numeric_expression
 array:= identifier(index *[, index]*)

 DIM array *[, array] *

example: i. DIM string_array$(10,10,50)
 ii. DIM matrix(100,100)

DIMN arrays
DIMN is a function which will return the maximum size of a specified dimension of a specified
array. If a dimension is not specified then the first dimension is assumed. If the specified
dimension does not exist or the identifier is not an array then zero is returned.

syntax: array:= identifier
 dimension:= numeric_expression {1 for dimension 1, etc.}

 DIMN(array [, dimension])

example: consider the array defined by: DIM a(2,3,4)
 i. PRINT DIMN(A,1) {will print 2}
 ii. PRINT DIMN(A,Z) {will print 3}
 iii. PRINT DIMN(A,3) {will print 4}
 iv. PRINT DIMN(A) {will print 2}
 v. PRINT DIMN(A,4) {will print 0}

36 04/23

DIR directory devices
DIR will obtain and display in the window attached to the specified or default channel, the
directory of the disk drive in the specified directory device.

syntax: DIR device

The device specification must be a valid directory device

The directory format output by DIR is as follows:

format:= disk format operating system QDOS or MSDOS
density:= formatting density SD, DD, or HD

 free_sectors:= the number of free sectors
 available_sectors:= the maximum number of sectors on this disk drive
 file_name:= a SBASIC file name

 screen format: Volume name format density
 free_sectors | available_sectors sectors
 file_name

 file_name

example: i. DIR flp1_
 ii. DIR "dev2_ "
 iii. DIR "win" & hard_drive_number$ & "_"

 screen format: BASIC QDOS HD
 183 / 221 sectors
 demo_1
 demo_1_old
 demo_2

DISP_BLANK
DISP_BLANK has no effect in QPC2.

DISP_COLOUR graphics device 2
DISP_COLOUR specifies the colour depth to be used

0 for QL
1 for 4 bit
2 for 8 bit
3 for 16 bit
4 for 24 bit.

It is possible to specify the display size immediately after the colour depth.

The parameters from frame rate onwards may be specified, but appear to have no effect in
QPC2.

syntax: colour_depth:= numeric_expression
xsize:= numeric_expression
ysize:= numeric_expression

DISP_COLOUR colour_depth [,xsize [,ysize]]

example: DISP_COLOUR 3, 800, 600 {specifies an 800 x 600 16 bit display}

04/23 37

DISP_INVERSE
DISP_INVERSE has no effect in QPC2.

DISP_RATE
DISP_RATE has no effect in QPC2.

DISP_SIZE graphics device 2
DISP_SIZE allows the screen resolution to be changed.

Its use is not recommended as it causes strange results, and only seems to work in a Microsoft
Windows, window (not in full screen mode).

Up to 4 additional parameters may be specified, but appear to have no effect in QPC2.

syntax: xsize:= numeric_expression
ysize:= numeric_expression

DISP_SIZE xsize [,ysize]

DISP_TYPE graphics device 2
DISP_TYPE will return a value indicating the type of display mode you are using.

0 – QL Colours display MODE 4
8 – QL Colours display MODE 8
16 – 8 bit Colour display (256 colour) mode
32 – High Colour 16-bit colour mode

syntax: DISP_TYPE

example: PRINT DISP_TYPE

DIV operator
DIV is an operator which will perform an integer divide.

syntax: numeric_expression DIV numeric_expression

example: i. PRINT 5 DIV 2 {will output 2}
 ii. PRINT -5 DIV 2 {will output -3}

38 04/23

DLINE BASIC
DLINE will delete a single line or a range of lines from a SBASIC program.

syntax: range:= | line_number TO line_number (1)
 | line_number TO (2)
 | TO line_number (3)
 | line_number (4)

 DLINE range*[,range]*

where (1) will delete a range of lines
 (2) will delete from the specified line to the end
 (3) will delete from the start to the specified line
 (4) will delete the specified line

example: i. DLINE 10 TO 70, 80, 200 TO 400
{will delete lines 10 to 70 inclusive, line 80 and lines 200 to 400 inclusive}

ii. DLINE
{will delete nothing}

DLIST defaults functions
DLIST will display in the default, or specified window the three defaults (data, program, and
destination).

syntax: DLIST [channel]
 DLIST \name

04/23 39

DMEDIUM_NAME$, DMEDIUM_DRIVE$
DMEDIUM_RDONLY, DMEDIUM_REMOVE
DMEDIUM_DENSITY, DMEDIUM_FORMAT
DMEDIUM_TYPE, DMEDIUM_TOTAL
DMEDIUM_FREE directory devices
The DMEDIUM_XXX set of functions can be used to obtain information about a device driver or
a medium which is currently driven by this driver, which could not be obtained easily in the past
(or not at all).

DMEDIUM_NAME$ Returns the medium name of the specified device.
DMEDIUM_DRIVE$ Returns the real device name of the specified file or device. This is the

only way to check if the access is done to the device it is intended to be
done, as devices may be renamed using RAM_USE, FLP _USE,
WIN_USE etc. This function also allows you to discover the "real"
device which may be hidden behind "DEV".

DMEDIUM_RDONLY Returns 1 if the medium is write-protected, otherwise 0. It checks the
various possibilities of write protection, even the software write-
protection which is possible for hard disks and removable hard disks.

DMEDIUM_REMOVE Returns 1 if the specified device is a removable hard disk.
DMEDIUM_DENSITY Returns the density: 1=DD, 2=HD etc. RAM-Disks return -1, as they

have no density.
DMEDIUM_FORMAT Returns the logical format of the medium or partition: 1=QDOS/SMSQ,

2=DOS/TOS.
DMEDIUM_TYPE Returns information about the physical drive: 0=RAM-Disk, 1=Floppy

Disk, 2=Harddisk, 3=CD-ROM.

DMEDIUM_TOTAL Returns the total number of free sectors (in 512 bytes sectors).
DMEDIUM_FREE Returns the number of free sectors (in 512 bytes sectors).

These functions should be used on directory devices (RAM, FLP, WIN etc.) only. The parameter
passed to these functions can either be a channel number (#channel) or a \directory or \file.

syntax: DMEDIUM_xxx (#channel | \directory | \file)

example: i. 10 OPEN #3,flp1_boot
20 PRINT DMEDIUM_NAME$(#3) {what's the name of the disk in flp1_}
30 CLOSE #3
40 PRINT DMEDIUM_NAME$(\win1_) {returns the name of WIN 1_}

ii. 10 DEV_USE 1,win1_ {DEV1_ accesses WIN1_}
20 OPEN_NEW #3,dev1_test {let's open a new file}
30 PRINT DMEDIUM_DRIVE$(#3) {really, it's on WIN1_}
40 CLOSE #3

iii. PRINT DMEDIUM_RDONLY(\flp1_)
iv. PRINT DMEDIUM_REMOVE(\win2_)
v. PRINT DMEDIUM_DENSITY(#4)
vi. PRINT DMEDIUM_FORMAT(flp2_)
vii. PRINT DMEDIUM_TYPE(dev2_)
viii.PRINT DMEDIUM_TOTAL(#3)
ix. PRINT DEMDUIM_FREE(#3)

40 04/23

DO program
DO will execute a series of SBASIC commands from file.

The commands should be 'direct': any lines with line numbers will be merged into the current
SBASIC program. The file should not contain any of the following commands. RUN, LRUN,
MRUN, MERGE, SAVE, SAVE_O, LOAD, STOP, NEW, CLEAR, CONTINUE, RETRY or
GOTO.

A DO file should be able to invoke SBASIC procedures without harmful effect.

syntax: DO name

comment: A DO file can contain in line clauses:

FOR i=1 to 20: PRINT 'This is a DO file'

If you try to RUN a BASIC program from a DO file, then the file will be left open.
Likewise, if you put direct commands in a file that is MERGED, then the file will be
left open.

DOS_DRIVE
DOS_DRIVE$ directory devices
DOS_DRIVE$ and DOS_DRIVE allows you to read and change the directory assignments for
the DOS device.

You can use this device in the same way as any other SMSQ/E directory device to access and
exchange files between Windows and SMSQ/E.

The usual restrictions imposed by the general QDOS file naming convention apply, i.e. the
length of the directory + filename is limited to 36 characters. Names longer than that won’t show
up in the directory lists! Therefore, it is a good idea to place files that you want to access from
both SMSQ/E and Windows only one or two directory levels deep, or change the base of a DOS
drive to one directly above the desired directories.

Many filenames that are valid under SMSQ/E are not valid under Windows. The offending
characters (e.g. *, /, ? etc. or filenames with spaces at their end) are translated into other, valid
ANSI characters. This conversion works quite well, but you are advised to only use valid
filenames wherever possible.

syntax: file_name:= string_expression
device_number:= numeric_expression

DOS_DRIVE device_number , string_expression
DOS_DRIVE$ (device_number)

example: DOS_DRIVE 2,”C:\WINDOWS” {Assign DOS2_ to the windows directory}
PRINT DOS_DRIVE$(2) {Returns “C:\WINDOWS”}

comment: One problem with the SMSQ/E way of accessing files is that the “_” separator can be
a valid part of a name or a directory separator. Therefore, the relation SMSQ
filename -> Windows filename is ambiguous.

See DOS device in the QPC Concepts document for more information.

04/23 41

DOS_USE directory devices
DOS_USE allows renaming of the DOS device. DOS_USE without a parameter will reset the
name of DOS back to DOS.

syntax: DOS_USE [name]

example: i. DOS _USE win : LOAD win2_prog {loads 'prog' from DOS2_ }
ii. DOS _USE {and now its name is DOS again}
iii. DOS_USE ram : DIR ram1_ {displays directory of DOS1_}

ED
EDIT
ED is a window based editor for editing SBASIC programs which are already loaded into QPC2.

If no line number is given, the first part of the program is listed, otherwise the listing in the
window will start at or after the given line number. If no channel number is given, the listing will
appear in the normal SBASIC edit window #2. If a window is given, then it must be a CONsole
window, otherwise a 'bad parameter' error will be returned. The editor will use the current ink
and paper colours for normal listing, while using white ink on black paper (or vice versa if the
paper is already black or blue) for 'highlighting'. Please avoid using window #0 for the ED.

The editor makes full use of its window. Within its window, it attempts to display complete lines.
If these lines are too long to fit within the width of the window, they are 'wrapped around' to the
next row in the window: these extra rows are indented to make this 'wrap around' clear. For
ease of use, however, the widest possible window should be used.

The ESC key is used to return to the SBASIC command mode.

After ED is invoked, the cursor in the edit window may be moved using the arrow keys to select
the line to be changed. In addition the up and down keys may be used with the ALT key (press
the ALT key and while holding it down, press the up or down key) to scroll the window while
keeping the cursor in the same place, and the up and down keys may be used with the SHIFT
key to scroll through the program a 'page' at a time.

The editor has two modes of operation: insert and overwrite. To change between the two modes
use 'CTRL F4' (press CTRL and while holding it down press F4). There is no difference
between the modes when adding characters to or deleting characters from the end of a line.
Within a line, however, insert mode implies that the right hand end of a line will be moved to the
right when a character is inserted, and to the left when a character is deleted. No part of the line
is moved in overwrite mode. Trailing spaces at the end of a line are removed automatically.

If you press F10 while the cursor is over a program line, then this line is put (without line
number) into the HOTKEY Buffer. It can easily be retrieved by pressing ALT SPACE in any
program where input is expected. In order to work, the HOTKEY System has to be going (use
HOT_GO to activate).

To insert a new line anywhere in the program, press ENTER. If there is no room between the
line the cursor is on and the next line in the program (e.g. the cursor is on line 100 and the next
line is 101) then the ENTER key will be ignored, otherwise a space is opened up below the
current line, and a new line number is generated. If there is a difference of 20 or more between
the current line number and the next line number, the new line number will be 10 on from the
current line number, otherwise, the new line number will be half way between them.

If a change is made to a line, the line is highlighted: this indicates that the line has been
extracted from the program. The editor will only replace the line in the program when ENTER is
pressed, the cursor is moved away from the line, or the window is scrolled. If the line is
acceptable to SBASIC, it is rewritten without highlighting. If, however, there are syntax errors,
the message 'bad line' is sent to window #0, and the line remains highlighted.

42 04/23

While a line is highlighted, ESC may be used to restore the original copy of the line, ignoring all
changes made to that line.

If a line number is changed, the old line remains and the new line is inserted in the correct place
in the program. This can be used to copy single lines from one part of the program to another.

If all the visible characters in a line are deleted, or if all but the line number is deleted, then the
line will be deleted from the program. An easier way to delete a line is to press CTRL and ALT
and then the left arrow as well.

The length of lines is limited to about 32766 bytes. Any attempt to edit longer lines may cause
undesirable side effects. If the length of a line is increased when it is changed, there may be a
brief pause while SBASIC moves its working space.

syntax: line_number:= numeric_ expression

ED [channel,] [line_number]

summary of Edit operations:

TAB tab right (columns of 8)
SHIFT TAB tab left (columns of 8)

ENTER accept line and create a new line
ESC escape - undo changes or return to SBASIC

up arrow move cursor up a line
down arrow move cursor down a line

ALT up arrow scroll up a line (the screen moves down!)
ALT down arrow scroll down a line (the screen moves up!)

SHIFT up arrow scroll up one page
SHIFT down arrow scroll down one page

left arrow move cursor left one character
right arrow move cursor right one character

SHIFT left arrow move cursor left one word
SHIFT right arrow move cursor right one word

ALT left arrow move to start of line
ALT right arrow move to end of line

CTRL left arrow delete character to left of cursor
CTRL right arrow delete character under cursor

CTRL SHIFT left arrow delete word to left of cursor
CTRL SHIFT right arrow delete word to right of cursor

CTRL ALT left arrow delete line to left of cursor
CTRL ALT right arrow delete line to right of cursor

CTRL down arrow delete whole line

F9 or SHIFT F4 change between overwrite and insert mode

F10 or SHIFT F5 when the cursor is over a program line, then this line is
put (without line number) into the HOTKEY Buffer.
It can easily be retrieved by pressing ALT SPACE in
any program where input is expected. In order to work,
the HOTKEY System has to be going (use HOT_GO to
activate)

comment: ED must not be called from within a SBASIC program.

04/23 43

ENVELOPE programmable sound generator
ENVELOPE will set the envelope register, and the envelope period registers.

Shape is one of the 10 available envelope shapes where 0 to 3 are the same first shape, and 4
to 7 are the same second shape.

Period is defined as the chip clock frequency (usually 1.774MHz) divided by 256. The time of
one cycle of the resultant frequency is a single period value.
In the default case 1.7734MHz / 256 = 6927Hz and the cycle time is 1 / 6927 = 144.3uS

syntax: shape:= numeric_expression {0 to 15}
period:= numeric_expression {0 to 4095}

ENVELOPE shape , period

example: ENVELOPE 11 , 2500 {2500 x 144.3uS = 0.36 seconds}

note: For more information on the AY-3 sound system, see the QPC Concepts document.

warning: ENVELOPE only works on AY-3 chip 0, and not on AY-3 chip 1

EOF
EOFW devices
EOF and EOFW are functions which will determine if an end of file condition has been reached
on a specified channel. If EOF is used without a channel specification then EOF will determine if
the end of a program's embedded data statements has been reached.

If an end of file condition cannot be determined immediately, EOF will wait a certain amount of
time before returning. EOFW will wait indefinitely.

syntax: EOF [(channel)]
EOFW [(channel)]

example: i. IF EOF(#6) THEN STOP
ii. IF EOF THEN PRINT "Out of data"

44 04/23

EPROM_LOAD
EPROM_LOAD will load an image of a QL EPROM cartridge. Most EPROM cartridges are
programmed so that the cartridge may be at any address.

Some are required to be at exactly $C000, the QL ROM port address. The first time the
command is used after reset, the EPROM image will be loaded at address $C000. Subsequent
images may be loaded at any address. Fussy EPROM images must, therefore, be loaded first.

An EPROM image file must not be longer than 16 kilobytes.

syntax: EPROM_LOAD filename

example: EPROM_LOAD flp1_Qleprom

comment: To make an EPROM image, put the EPROM cartridge into a QL and turn on.
SBYTES the image to a suitable file with the magic numbers 49152 ($C000) for the
base address and 16384 (16 kilobytes) for the length. .

SBYTES flp1_eprom, 49152, 16384 {Save EPROM image}

In QPC2 copy the file to your boot diskette or disk and add the EPROM_LOAD
statement to your "boot" file.

EPROM_LOAD flp1_eprom {Load EPROM image}

ERLIN
ERNUM error handling
ERLIN is a function that will return the line number where an error has occurred.

ERNUM is a function that will return the error number.

ERLIN and ERNUM should only be used as direct commands from the keyboard, or within a
WHEN ERROR clause.

syntax: ERLIN
ERNUM

example: i. PRINT ERLIN
ii. last_error = ERNUM

ERT hotkey system
ERT will report the error and stop if its parameter value is negative. If it is not negative then ERT
will report nothing and continue processing the next statement.

As well as the Hotkey functions. ERT can be used with any function, which returns an error
code.

syntax: ERT function

example: i. ERT HOT_LOAD ('x', flp1_program) {report error if hotkey in use, or file
 not found}

ii. ERT –9 {gives "in use" error}

04/23 45

EX, EXEC
EW, EXEC_W
ET, EX_M multitasking
EX, EW and EX_M will load a sequence of programs and execute them in parallel.

EX will return to the command processor after all processes have started execution, EW will
wait until all the processes have terminated before returning.

EX_M behaves like EX in that the calling job continues executing, But the job created is owned
by the calling job. This means that if you kill the calling job, you will also kill the created job.

ET sets up the programs, but returns to SBASIC so that a debugger can be called to trace the
execution.

EXEC is the same as EX, and EXEC_W is the same as EW.

syntax: program:= device
parameters:= string_expression
file:= filename, or channel_number

EX program [*,file *] [;parameters]
EW program [*,file *] [;parameters]
ET program [*,file *] [;parameters]
EX_M program [*,file *] [;parameters]

In this case the program in the file 'name' is loaded into the transient program area,
the string is pushed onto its stack and execution is initiated.

Finally it is possible for EX to open input and output files for a program as well as (or
instead of) passing it parameters. If preferred, a SBASIC channel number may be
used instead of a filename. A channel used in this way must already be open.

example: The program UC converts a text file to upper case, the command:

EX uc, flp1_fred, #1 {load and initiate the program UC, with the file flp1_fred
 as its input file, and the output being sent to
 window #1.}

EX is designed to set up filters for processing streams of data.

Within QPC2 it is possible to have a chain of co-operating jobs engaged in processing the same
data in a form of a production line. When using a production line of this type, each job performs
a well-defined part of the total process. The first job takes the original data and does its part of
the process; the partially processed data is then passed on to the next job which carries out its
own part of the process; and so the data gradually passes through all the processes. The data
is passed from one Job to the next through a 'pipe'. The data itself is termed a 'stream' and the
Jobs processing the data are termed 'filters'.

the complete form of the EX command is

prog_spec:= program [*,file *] [;parameters

EX [#channel TO] prog_spec [* TO prog_spec *] [TO #channel]

Each TO separator creates a pipe between Jobs.

46 04/23

All the program names and the parameter strings may be names, strings or string expressions.
The significance of the filenames is, to some extent, program dependent; but there are two
general rules which should be used by all filters:

The primary input of a filter is the pipe from the previous Job in the chain (if it exists),
or else the first data file.

The primary output of a filter is the pipe to the next job in the chain (if it exists) or
else the last data file.

Many filters will have only two I/O channels: the primary input and the primary output.

If the parameters of EX start with '#channel TO', then the corresponding SBASIC channel will be
closed (if it was already open) and a new channel opened as a pipe to the first program. Any
data sent to this channel (e.g. by PRINTing to it) will be processed by the chain of Jobs. When
the channel is CLOSEd, the chain of Jobs will be removed from QPC2.

If the parameters of EX end with 'TO #channel', then the corresponding SBASIC channel will be
closed (if it was already open) and a new channel opened as a pipe from the last program. Any
data passing through the chain of Jobs will arrive in this channel and may be read (e.g. by
INPUTing from it). When all the data has passed, the Jobs will remove themselves and any
further attempt to take input from this channel will get an 'end of file' error. The EOF function
may be used to test for this.

Example of Filter Processing

As an example of filter processing, the programs UC to convert a file to upper case, LNO to line
number a file, and PAGE to split a file onto pages with an optional heading are all chained to
process a single file:

EX uc, fred TO lno TO page,ser; 'File fred at '&date$

The filter UC takes the file 'fred' and after converting it to upper case, passes through a pipe to
LNO. LNO adds line numbers to each line and passes the file down a pipe to PAGE. In its turn,
PAGE splits the file onto pages with the heading (including in this case the date) at the top of
each page, before sending the file to the SER port. Note that the file fred itself is not modified;
the modified versions are purely transient.

Executing a SBASIC program

If you execute a SBASIC program that ends in _bas, It will be loaded and started in a new
daughter SBASIC job.

EXEC a_basic_program_bas[;”cmd_string”]

Note that no channels #0,#1,or #2 are initially opened in the new SBASIC job, and must be
opened specifically if required. Otherwise any commands which try to use any of these channels
will cause #0 to be opened as a small window in the center of the SBASIC job.
Once this channel has been opened, then #1 and #2 will also use this channel.

The optional cmd_string will be passed to a variable named CMD$ in the new daughter
SBASIC.

04/23 47

EXEP hotkey system
EXEP is a supplement to the EXEC (or EX) command. It has all the options of the HOT_RES,
HOT_CHP, HOT_LOAD and HOT_THING functions. It does not set up a Hotkey but executes a
program directly, either from an Executable Thing, or from a file.

To persuade the HOTKEY system to execute a Job with Unlocked windows, you need to add
the single parameter "U" to the function parameter list. To provide a "Guardian" window to
preserve the whole area used by the Job, you need to add the single parameter "G" to the
function parameter list. Optionally, you may follow this by the window area (size, position) of the
Guardian window as four numbers. Any attempt by a program to open or redefine a window
outside its Guardian will fail. To execute a Job so that it will be frozen when its windows are
buried, you add the single parameter "F" to the parameter list. To prevent the program from
taking too much memory, you add the parameter "P", optionally followed by the amount of
memory (in kilo bytes) the program may take.

Note that "U", "G", "P" or "F" can be used after the "I" option for impure programs which modify
there own code.

syntax: params:= string {list of parameters for individual programs}
options:= [I,] U

 | G [width, height, xorg, yorg]
 | P [memory] {in kilobytes}
 | F

EXEP filename [;params] [,jobname] [,options])
EXEP thingname [;params] [,jobname] [,options])

example: i. EXEP Quill,p,40 {execute Quill in 40 kbytes}
ii. EXEP Capsclock,u {execute capslock in unlockable window}
iii. EXEP SBASIC;”lrun ‘win2_program_bas’”

{starts an SBASIC daughter job and sends
 the string ‘lrun win2_program_bas’
 to #0 of the SBASIC job}

EXIT repetition
EXIT will continue processing after the END of the named FOR or REPeat structure.

syntax: EXIT identifier

example: i. 100 REM start Looping
 110 LET count = 0
 120 REPeat Loop
 130 LET count = count +1
 140 PRINT count
 150 IF count = 20 THEN EXIT Loop
 160 END REPeat loop

{the loop will be exited when count becomes equal to 20}

 ii. 100 FOR n =1 TO 1000
 110 REM program statements
 120 REM program statements
 130 IF RND >.5 THEN EXIT n
 140 END FOR n

{the loop will be exited when a random number greater than 0.5
 is generated}

48 04/23

EXP maths functions
EXP will return the value of e raised to the power of the specified parameter.

syntax: EXP (numeric_expression) {range -500..500}

example: i. PRINT EXP(3)
ii. PRINT EXP(3.141592654)

EXTRAS
EXTRAS will output to the specified or default channel, a list of commands and functions
available to SBASIC

syntax: EXTRAS [#channel]

example: i. EXTRAS #3 {output list to #3}
ii. EXTRAS {output list to default channel #1}

FDEC$
IDEC$, CDEC$ conversion functions
These routines convert a value into a decimal number in a string. The number of decimal places
represented is fixed, and the exponent form of floating point number is not used.

The three routines are very similar. FDEC$ converts the value as it is, whereas IDEC$ assumes
that the value given is an integral representation in units of the least significant digit displayed.
CDEC$ is the currency conversion which is similar to IDEC$, except that there are commas
every 3 digits.

syntax: field:= numeric_expression {length of returned string}
ndp:= numeric_expression {number of decimal places}

FDEC$ (value, field, ndp)
IDEC$ (value, field, ndp)
CDEC$ (value, field, ndp)

example: i. PRINT FDEC$ (1234.56,9,2) {will print ' 1234.56'}
ii. PRINT IDEC$ (123456,9,2) {will print ' 1234.56'}
iii. PRINT CDEC$ (123456,9,2) {will print ' 1,234.56'}

comment: If the number of characters is not large enough to hold the value, the string is filled
with '*'. The value should be between -2^31 and 2^31 (-2,000,000,000 to
+2,000,000,000) for IDEC$ and CDEC$, whereas for FDEC$ the value multiplied by
10^ndp should be in this range.

04/23 49

FEP, FET
FEW, FEX
FEX_M, EXF multitasking
FEP, FET, FEW, FEX and FEX_M will load a sequence of programs and execute them in
parallel and return the ID of the job which is created.

This ID can be used to manipulate the job in various ways by using the other job control
commands.

These commands perform the same functions as the commands EXEP, ET, EW, EXEC_W, EX,
and EXEC. But they also return the job ID of the created job. Except for the FEW command
which returns the error code, returned by the (first) job.

FEX_M behaves like FEX in that the calling job continues executing, But the job created is
owned by the calling job. This means that if you kill the calling job, you will also kill the created
job.

EXF is functionally equivalent to FEX. It is included as FEX may clash with the FEX keyword
contained in a commercial application named FileInfo II.

syntax: program:= device
parameters:= string_expression
file:= filename, or channel_number
options:= [I,] U

 | G [width, height, xorg, yorg]
 | P [memory] {in kilobytes}
 | F

FEP (filename [;parameters] [;jobname] [,options])
FEP (thingname [;parameters] [;jobname] [,options])
FET (program [*,file *] [;parameters])
FEW (program [*,file *] [;parameters])
FEX (program [*,file *] [;parameters])
FEX_M (program [*,file *] [;parameters])
EXF (program [*,file *] [;parameters])

example: i. PRINT FEP (flp1_Quill,p,40) {print job number for flp1_Quill in 40k bytes}
ii PRINT FET (win1_Clock_exe) {print job number for win1_clock_exe}

FEXP$ conversion functions
FEXP$ will convert a value to a string representing the value in exponent form.

The form has an optional sign and one digit before the decimal point, and 'ndp' digits after the
decimal point. The exponent is in the form of 'E' followed by a sign followed by 2 digits. The field
must be at least 7 greater than ndp.

syntax: field:= numeric_expression {length of returned string}
ndp:= numeric_expression {number of decimal places}

FEXP$ (value, field, ndp)

example: PRINT FEXP$ (1234.56,12,4) {will print ' 1.2346E+03'}

50 04/23

FILL graphics
FILL will turn graphics fill on or off. FILL will fill any non-re-entrant shape drawn with the
graphics or turtle graphics procedures as the shape is being drawn. Re-entrant shapes must be
split into smaller non-re-entrant shapes.

When you have finished filling, FILL 0 should be called.

syntax: switch:= numeric_expression {range 0..1}

 FILL [channel,] switch

example: i. FILL 1:LINE 10,10 TO 50,50 TO 30,90 TO 10,10:FILL 0
{will draw a filled triangle}

 ii. FILL 1:CIRCLE 50,50,20:FILL 0
{will draw a filled circle}

FILL$ string arrays
FILL$ is a function which will return a string of a specified length filled with a repetition of one or
two characters.

syntax: FILL$ (string_expression, numeric_expression)

The string expression supplied to FILL$ must be either one or two characters long.

example: i. PRINT FILL$("a",5) {will print aaaaa}
 ii. PRINT FILL$("oO",7) {will print oOoOoOo}
 iii. LET a$ = a$ & FILL$(" ",10)

FLASH windows
FLASH turns the flash state on and off. FLASH is only effective in low resolution mode. FLASH
will be effective in the window attached to the specified or default channel.

syntax: switch:= numeric_expression {range 0..1}

 FLASH [channel,] switch

where: switch = 0 will turn the flash off
 switch = 1 will turn the flash on

example: 100 PRINT "A ";
 110 FLASH 1
 120 PRINT "flashing ";
 130 FLASH 0
 140 PRINT "word"

warning: Writing over part of a flashing character can produce spurious results and should be
avoided.

04/23 51

FLEN, FTYP, FDAT
FXTRA, FNAME$
FUPDT, FBKDT, FVERS file information
There are six functions to extract information from the header of a file.

FLEN will return the length of the file.
FTYP will return the file type. The file type is, 0 for ordinary files, 1 for executable programs, and
2 for relocatable machine code.
FDAT will return the files data space. Only valid results will be obtained from executable
programs.
FXTRA will return the file extra information.
FNAME$ will return the filename.
FUPDT will return the files update date
FBKDT will return the backup date from the file.
FVERS will return the files version number.

If a file is being extended, the file length can be found by using the FPOS function to find the
current file position. (If necessary the file pointer can be set to the end of file by the command
GET \#n 999999.)

syntax: FLEN (#channel)
FTYP (#channel)
FDAT (#channel)
FXTRA (#channel)
FNAME$ (#channel)
FUPDT (#channel)

example: PRINT FLEN (#3) {print the length of the file open on channel #3}

comment: The file information functions can also be used with implicit channels. E.g.

PRINT FLEN (\fred) {print the length of file fred}

FLP_DENSITY directory devices
The SMSQ/E format routines will usually attempt to format a disk to the highest density possible
for a medium. The FLP_DENSITY command is used to specify a particular recording density
during format. The density codes are "S" for single sided (double density) 360KB, "D" for double
density 720KB, "H" for high density 1.4MB, and "E" for extra high density 3.2MB.

syntax: FLP_DENSITY [S | D | H | E]

example: i. FLP_DENSITY S {set the default format to single sided}
ii. FLP_DENSITY H {set the default format to high density}
iii. FLP_DENSITY {reset to automatic density selection}

comment: The same code letters may be added (after a *) to the end of the medium name to
force a particular density format. (For compatibility with older drivers, if the code
letter is omitted after the *, single sided format is assumed.

i. FORMAT ’FLP1_Disk23’ {format at highest density or as specified by
 FLP_DENSITY}

ii. FORMAT ’FLP1_Disk24*’ {format single sided}
iii. FORMAT ’FLP1_Disk25*S’ {format single sided}
iv. FORMAT ’FLP1_Disk25*D’ {format double sided, double density}

52 04/23

FLP_DRIVE floppy disk image support
FLP_DRIVE sets or changes the floppy disk image file that is used to emulate a real floppy disk
drive.

Only floppy disk image files that are stored on a Windows drive, may be used with the
FLP_DRIVE command.

Extra density (ED), image files are not supported by the FLP_DRIVE command, and you may
only use drive numbers 1 & 2 to emulate FLP1_ & FLP2_

To reset a FLP drive back to a physical floppy disk drive, supply a filename of A:\, or B:\ in the
FLP_DRIVE command.

syntax: drive:= numeric_expression {1 or 2}
filename:= string_expression

FLP_DRIVE drive , filename

example: i. FLP_DRIVE 2,”C:\FLOPPY.IMG” {set FLP2_ to be the image file
FLOPPY.IMG on Windows drive C:}

ii. FLP_DRIVE 2,”B:\” {FLP2_ is now the physical drive B:}

FLP_DRIVE$ floppy disk image support
The FLP_DRIVE$ function is used to find the current connection of the floppy device.

FLP_DRIVE$ will either return the windows drive letters A:\ or B:\. Or the Windows path and
filename of the attached image file.

syntax: drive:= numeric_expression {1 or 2}

FLP_DRIVE$(drive)

example: PRINT FLP_DRIVE$(2)

FLP_SEC
FLP_START, FLP_STEP directory devices
These commands are supplied for compatibility reasons. QPC2 has no influence over how the
Windows disk driver works, therefore these commands are ignored.

FLP_TRACK directory devices
FLP_TRACK sets the number of tracks to be formatted on a floppy disk.

syntax: tracks:= numeric_expression

FLP_TRACK tracks

example: 100 FLP_TRACK 40 {set number of tracks to 40}
110 FORMAT flp1_small {only format 40 tracks of disk}

04/23 53

FLP_USE directory devices
FLP_USE allows renaming of the FLP device. FLP_USE without a parameter will reset the
name of FLP back to FLP.

syntax: FLP_USE [name]

example: i. FLP _USE dos : LOAD dos2_prog {loads 'prog' from FLP2_ }
ii. FLP _USE {and now its name is FLP again}
iii. FLP_USE win : DIR win1_ {displays directory of FLP1_}

FLUSH directory devices
SMSQ/E directory device drivers maintain as much of a file in RAM as possible. A power failure
or other accident could result in a file being left in an incomplete state. The FLUSH command
will ensure that a file is updated without closing it. Closing a file will always cause the file to be
flushed.

syntax: FLUSH #channel

FOPEN, FOP_IN
FOP_NEW, FOP_OVER
FOP_DIR devices
This is a set of functions for opening files. These functions differ from the OPEN procedures in
two ways. Firstly, if a file system error occurs (e.g. 'not found' or 'already exists') these functions
return the error code and continue. Secondly the functions may be used to find a vacant hole in
the channel table: if successful they return the channel number.

When called with two parameters, these functions return the value zero for successful
completion, or a negative error code.

The #channel parameter is optional: if it is not given, the functions will search the channel table
for a vacant entry, and, if the open is successful, the channel number will be returned. Note that
error codes are always negative, and channel numbers are positive.

syntax: FOPEN ([#channel,] name) {open a file for read/write}
FOP_IN ([#channel,] name) {open a file for input only}
FOP_NEW ([#channel,] name) {open a new file}
FOP_OVER ([#channel,] name) {open a new file, if it exists it is overwritten}
FOP_DIR ([#channel,] name) {open a directory}

example: i. A file may be opened for read only with an optional extension using the following
code:

ferr=FOP_IN (#3,name$&'_ASM') :REMark try to open _ASM file
IF ferr=-7: ferr=FOP_IN (#3,name$) :REMark ERR.NF, try no _ASM

ii. outch = FOP_NEW (fred) :REMark open fred
if outch < 0: REPORT outch: STOP :REMark ... oops
PRINT #outch, 'This is file Fred'
CLOSE #outch

54 04/23

FOR
END FOR repetition
The FOR statement allows a group of SBASIC statements to be repeated a controlled number
of times. The FOR statement can be used in both a long and a short form.

NEXT and END FOR can be used together within the same FOR loop to provide a loop
epilogue, i.e. a group of SBASIC statements which will not be executed if a loop is exited via an
EXIT statement but which will be executed if the FOR loop terminated normally.

define: for_item:= | numeric_expression
 | numeric_exp TO numeric_exp
 | numeric_exp TO numeric_exp STEP numeric_exp

for_list:= for_item *[, for_item] *

SHORT: The FOR statement is followed on the same logical line by a sequence of SBASIC
statements. The sequence of statements is then repeatedly executed under the
control of the FOR statement. When the FOR statement is exhausted, processing
continues on the next line. The FOR statement does not require its terminating
NEXT or END FOR. Single line FOR loops must not be nested.

syntax: FOR variable = for_list : statement *[: statement]*

example: i. FOR i = 1, 2, 3, 4 TO 7 STEP 2 : PRINT i
 ii. FOR element = first TO last : LET buffer (element) = 0

LONG: The FOR statement is the last statement on the line. Subsequent lines contain a
series of SBASIC statements terminated by an END FOR statement. The statements
enclosed between the FOR statement and the END FOR are processed under the
control of the FOR statement.

syntax: FOR variable = for_list
 statements
 END FOR variable

example: 100 INPUT "data please" ! x
 110 LET factorial = 1
 120 FOR value = x TO 1 STEP -1
 130 LET factorial = factorial * value
 140 PRINT x !!!! factorial
 150 IF factorial>lE20 THEN
 160 PRINT "Very Large number"
 170 EXIT value
 180 END IF
 190 END FOR value

04/23 55

FORMAT directory devices
FORMAT will format and make ready for use the directory device contained in the specified
drive.

The specified device is the drive (physical or virtual) to be used for formatting and an identifier
part used as the medium or volume name for floppy disks, The number of sectors (512 bytes)
for RAM disks, or the size in megabytes for WIN drives.

FORMAT will write the number of good sectors and the total number of sectors available on the
directory device to the default or on the specified channel.

A RAM disk may be removed by giving either a null name or zero sectors.

For WIN drives, SMSQ/E has a two-level protection scheme to prevent accidental formatting of
WIN drives. THE command WIN_FORMAT must first be used from the first console window of
job 0, (the first SBASIC) Followed by the FORMAT command. You must then type in the two
characters that are displayed on the screen before the format will commence.

Adding a code letter after a ‘*’ at the end of the medium name for floppy disks, will force a
particular density of format, Single, Double, or High.

syntax: device:= device_name | name
 | number

FORMAT [channel,] device[* | S | D | H]

example: i. FORMAT flp1_data_disk
 ii. FORMAT ram2_20 {format RAM2_ to 10K bytes}

iii. WIN_FORMAT 2 {allow WIN2_ to be formatted}
FORMAT win2_40 {format WIN2_ to 40M bytes}

iv. FORMAT flp2_costs*d {format flp2_ as double density}
v. FORMAT ram1_0 {remove RAM1_}

FORMAT can be used to reinitialise a used directory device. However all data contained on that
device will be lost.

comment: As of version 4.00 of QPC2. The FORMAT command no longer physically formats
floppy disks. The disk must have already been formatted by Windows, or by another
means. Formatting the disk in QPC2 only writes the SMSQ/E file system onto it.

56 04/23

FPOS devices
FPOS will return the current file position for the specified channel.

The file pointer can be set by the commands BGET, BPUT, GET or PUT with no items to be got
or put. If an attempt is made to put the file pointer beyond the end of file, the file pointer will be
set to the end of file and no error will be returned. Note that setting the file pointer does not
mean that the required part of the file is actually in a buffer, but that the required part of the file
is being fetched. In this way, it is possible for an application to control prefetch of parts of a file
where the device driver is capable of prefetching.

syntax: FPOS (#channel)

example: 10 PUT #4\102,value1,value2
20 ptr = FPOS (#4) {set 'ptr' to 114 (=102+6+6)}

FREE_MEM memory management
The function FREE_MEM will return the amount of free memory available in the ‘common heap’.

syntax: FREE_MEM

example: PRINT FREE_MEM

FTEST devices
The function FTEST is used to determine the status of a file or device. It opens a file for input
only and immediately closes it. If the file exists it will either return the value 0 or -9 (in use error
code). If it does not exist, it will return -7 (not found error code). Other possible returns are -11
(bad name), -15 (bad parameter), -3 (out of memory) or -6 (no room in the channel table).

syntax: FTEST (name)

example: The function can be used to check that a file does not exist:

IF FTEST (file$) <> -7: PRINT 'File '; file$; ' exists'

04/23 57

GET
PUT unformatted I/O
It is possible to put or get values in their internal form. The PRINT and INPUT commands of
SBASIC handle formatted IO, whereas the direct I/O routines GET and PUT handle unformatted
I/O. For example, if the value 1.5 is PRINTed the byte values 49 ('1'), 46 ('.') and 53
('5') are sent to the output channel. Internally, however, the number 1.5 is represented by 6
bytes (as are all other floating point numbers). These six bytes have the value 08 01 60 00 00
00 (in hexadecimal). If the value is PUT, these 6 bytes are sent to the output channel.

The internal form of an integer is 2 bytes (most significant byte first). The internal form of a
floating point number is a 2 byte exponent to base 2 (offset by hex 81F), followed by a 4 byte
mantissa, normalised so that the most significant bits (bits 31 and 30) are different. The internal
form of a string is a 2 byte positive integer, holding the number of characters in the string,
followed by the characters.

GET gets data in internal format from the specified or default channel. PUT puts data in internal
format into the specified or default channel. For GET, each item must be an integer, floating
point, or string variable. Each item should match the type of the next data item from the channel.
For PUT, the type of data put into the channel, is the type of the item in the parameter list.

syntax: GET #channel\ [position] , items {get internal format data from a file}
PUT #channel\ [position] , items {put internal format data onto a file}

example: 10 fpoint=54
20 wally%=42: salary=78000: name$='Smith'
30 PUT #3\fpoint, wally%, salary, name$

position the file, open on #3, to the 54th byte, and put 2 bytes (integer 42), 6 bytes
(floating point 78000), 2 bytes (integer 5) and the 5 characters 'Smith'. Fpoint will be
set to 69 (54+2+6+2+5).

comment: For variables or array elements the type is self evident, while for expressions there
are some tricks which can be used to force the type:

.... +0 will force floating point type;

.... &” will force string type;

.... ||0 will force integer type.

xyz$='ab258.z'
...
PUT #3\37,xyz$(3 to 5)||0

will position the file opened on channel #3 to the 37th byte and then will put the
integer 258 on the file in the form of 2 bytes (value 1 and 2, i.e. 1*256+2).

GOSUB
For compatibility with other BASICs, SBASIC supports the GOSUB statement. GOSUB
transfers processing to the specified line number; a RETurn statement will transfer processing
back to the statement following GOSUB.

The line number specification can be an expression.

syntax: GOSUB line_number

example: i. GOSUB 100
 ii. GOSUB 4*select_variable

comment: The control structures available in SBASIC make the GOSUB statement redundant.

58 04/23

GOTO
For compatibility with other BASICs, SBASIC supports the GOTO statement. GOTO will
unconditionally transfer processing to the statement number specified. The statement number
specification can be an expression.

syntax: GOTO line_number

example: i. GOTO program_start
 ii. GOTO 9999

comment: The control structures available in SBASIC make the GOTO statement redundant.

HEX
HEX$ conversion functions
HEX will convert the supplied hexadecimal string into a value. The 'digits' '0' to '9' 'A' to 'F' and
'a' to 'f' have their conventional meanings. HEX will return an error if it encounters a non-
recognised character.

HEX$ will return a string of sufficient length to represent the value of the specified number of
bits of the least significant end of the value rounded up to the nearest multiple of 4.

syntax: number_of_bits:= numeric_expression

HEX (hexadecimal_string)
HEX$ (value, number_of_bits)

example: PRINT HEX (“1AF6”) {will output 6902}
PRINT HEX$ (32673 , 16) {will output “7FA1”}

HGET
HPUT formatted I/O
HGET and HPUT will read and write the first parts of a file header from the specified or default
channel. Both commands accept up to 5 parameters, which are of the type floating point. The
first parameter is the file length (long), followed by the access byte (byte), followed by the file
type (byte), then comes the dataspace (long) and finally the extra-information (long).

syntax: length:= numeric_expression
access:= numeric_expression
type:= numeric_expression
dataspace:= numeric_expression
extra:= numeric_expression

HGET [#channel,] length, access, type, dataspace, extra
HPUT [#channel,] length, access, type, dataspace, extra

example: OPEN#3,flp1_file
HGET#3, length, access, type, space, extra
HPUT#3,length, access,1 ,1024,extra
CLOSE#3

converts a file into an executable file with 1k Byte data space.

04/23 59

HOLD programmable sound generator
HOLD will pause all, or a designated interrupt sound list. HOLD without a parameter, or a value
of zero will pause all of the interrupt sound lists.

SOUND_AY will be needed to clear the sound lists.

syntax: sound_list:= numeric_expression {0 to 6}

HOLD [sound_list]

example: i. HOLD
ii. HOLD 0
iii. HOLD 2
iv. HOLD int4

note: Currently HOLD stops with an error 'invalid channel ID' if you try to hold a sound list
that is currently not in use.

For more information on the AY-3 sound system, see the QPC Concepts document.

HOME_CSET, HOME_CUR$, HOME_DEF, HOME_DIR$,
HOME_FILE$, HOME_SET, HOME_VER$
This is a set of commands and functions for controlling the Home Thing.

HOME_CSET Sets the current directory for the job indicated. The job ID is optional, in that
case -1 (meaning the current job), will be assumed if no job_ID is given.

HOME_CURR$ This function returns the current directory for the job given as job_id. The job ID
is optional, in that case -1, meaning the current job, will be assumed.

HOME_DEF This sets a default filename for a job with the name given as the first parameter.
This is useful for "executable things", where no filename is readily available, or for file managers
that haven't integrated calls to the home thing. With this keyword, you set up the default job
name and filename that is to be used for the home/current file/dir.
Please note that the file_name$ parameter must indeed be a FILENAME, not a directory name.

HOME_DIR$ This function returns the home directory for the job given as job_id. The job ID
is optional, in that case -1,meaning the current job, will be assumed. To avoid programs
stopping with an error if the home directory cannot be found for some reason, this function
returns an empty string if that error happens.

HOME_FILE$ This function returns the home filename for the job given as job_id. The job ID
is optional, in that case -1,meaning the current job, will be assumed.

HOME_SET Normally, jobs should not try to set up a home directory for themselves. This
should be left to the system/filemanager. When a job is started with EX, EW or any of the similar
commands, this is done automatically. However, filemanager writers may be interested in this
information.
The HOME_SET command can be used to set the home directory, home filename and current
directory. You pass the thing the job ID of the job for which this is to be set up and the entire
filename, including the device and directory. The thing extracts the home directory from the
filename. If you want to set up the home directory for the current job, you may pass -1 as
parameter.
Since there can only be one home directory for a job and since that can only be defined once,
the keyword will give an ‘in use’ error if the home directory is already set for this job. Otherwise,
this keyword will set the home directory, the home file and the current directory.
This keyword exists mainly for testing purposes.

60 04/23

HOME_VER$ This function returns the version number of the HOME thing.

syntax: job_id:= job_number + (tag_number * 65536)

HOME_CSET [job_id],directory$
HOME_CURR$ [(job_id)]
HOME_DEF job_name$, file_name$
HOME_DIR$ [(job_id)]
HOME_FILE$ [(job_id)]
HOME_SET job_id,device_directory_and_filename$
HOME_VER$

example: HOME_CSET 262148,’Win1_Launchpad_’
{set Current Directory for job with ID of 262148 ($00040004) to
 Win1_Launchpad_}

result$=HOME_CURR$
{return the Current Directory for the current job}

HOME_DEF "Sbasic", "dev1_sbasic_test_bas"
{set default filename for Sbasic to dev1_sbasic_test_bas}

result$=HOME_DIR$(-1)
{return the Home Directory for the current job (job’s own Home Directory)}

result$=HOME_DIR$(JOBID(‘launchpad’))
{returns the Home Directory for job called ‘Launchpad’, using the JOBID
 function to provide the job ID of ‘Launchpad’}

result$=HOME_FILE$
{return the Home Filename for the current job}

HOME_SET -1,’win1_dir_myprog_exe’
{set job’s own home directory, home file and current directory }

result$ = HOME_VER$
{get the HOME thing version number into the string result$}

PRINT HOME_VER$
{display the version number of the HOME thing}

04/23 61

HOT_CHP, HOT_CHP1
HOT_RES, HOT_RES1 hotkey system
HOT_CHP and HOT_RES will load a program into either the common heap, or the resident
procedure area, making it into an Executable Thing. This Thing can then be executed very
quickly when the Hotkey is pressed.

For frequently used programs, these two functions set up an Executable Thing to be executed
using a Hotkey. If you want to add a program temporarily that you may wish to remove later,
HOT_CHP should be used. Otherwise HOT_RES should be used, as this will often give faster
execution. If the resident procedure area is not available, then HOT_RES will use the common
heap instead.

HOT_CHP1 and HOT_RES1 are the same as HOT_CHP and HOT_RES, except that they set
up a Wake Hotkey. When you press the Hotkey, if there is already a Job of the same name
executing, then it will be Picked and Woken, otherwise a new copy will be executed.

Jobs may be identified by a name, which is normally the program name. This name is to be
found in the base area of a standard program. It is possible, however, to specify a different
name for a Job when you set up the Hotkey.

To persuade the HOTKEY system to execute a Job with Unlocked windows, you need to add
the single parameter "U" to the function parameter list. To provide a "Guardian" window to
preserve the whole area used by the Job, you need to add the single parameter "G" to the
function parameter list. Optionally, you may follow this by the window area (size, position) of the
Guardian window as four numbers. Any attempt by a program to open or redefine a window
outside its Guardian will fail. To execute a Job so that it will be frozen when its windows are
buried, you add the single parameter "F" to the parameter list. To prevent the program from
taking too much memory, you add the parameter "P", optionally followed by the amount of
memory (in kilo bytes) the program may take.

Note that "U", "G", "P" or "F" can be used after the "I" option for impure programs which modify
there own code.

The functions will return one of the following error codes:
 0 - No error
-2 - No job (file is not executable)
-3 - Out of memory
-7 - Not found (file could not be found)
-9 - In use (Hotkey is already being used for some other operation)
-12- Bad name (bad file name)

syntax: key:= character_string {single character string in the range 32 to 191}
params:= string {list of parameters for individual programs}
options:= [I,] U

 | G [width, height, xorg, yorg]
 | P [memory]
 | F

HOT_CHP (key, filename [;params] [,jobname] [,options])
HOT_RES (key, filename [;params] [,jobname] [,options])
HOT_CHP1 (key, filename [;params] [,jobname | !wakename] [,options])
HOT_RES1 (key, filename [;params] [,jobname | !wakename] [,options])

62 04/23

example: i. ERT HOT_RES (' t', qtyp) {set up QTYP using default drive}
ii. ERT HOT_RES1 (' t' , f lp1_qtyp) {just one copy on the specified drive}
iii. ERT HOT_RES (' t' ,' f lp1_qtyp') {or all between apostrophes}
iv. ERT HOT_CHP (' t' , qtyp) {or so we can HOT_REMV it}
v. ERT HOT_RES ('=', qtyp_e, 'Editor Qtyp') {specifying a job name}
vi. ERT HOT_RES (c, capsclock, u) {set up unlocked "capsclock" on

 ALT C}
vii. ERT HOT_RES (x, terminal, g) {set up Terminal on ALT X with

 Guardian window covering the whole
 Screen}

viii ERT HOT_RES (r, rubbish, i, g, 124, 22, 388, 0) {setup '' rubbish'', an impure
 program which requires a Guardian of
 124x22 pixels with its origin at 388x0}

comment: Alternatively we can set up QTYP in a loop checking the error return for a not found:
10 REPeat Iqtyp
20 herr = HOT_RES (' t', ' qtyp') {try loading Qtyp}
30 IF NOT herr; EXIT Iqtyp {..OK}
40 IF herr =-7 {not found?}
50 INPUT #0, 'Put Qtyp disk in drive 1 and press ENTER'
60 NEXT Iqtyp {try again}
70 END IF

 80 PRINT #0, ' Loading Qtyp';: ERT herr {give up}
 90 END REPeat Iqtyp

HOT_CMD hotkey system
HOT_CMD allows one or more commands to be sent directly to the command console of
SBASIC. This is similar to HOT_KEY, but when the Hotkey is pressed, SBASIC is Picked to the
top, and each command is sent to the command console, followed by a newline (ENTER).

This can be used to load and run SBASIC programs, or to execute simple command
sequences.

The function will return one of the following error codes:
 0 - No error
-9 - In use (Hotkey is already being used for some other operation)

syntax: key:= character_string {single character string in the range 32 to 191}

HOT_CMD (key, string *[,string]*)

example: i. ERT HOT_CMD (m,' LRUN flpl_mandel') {LRUN a BASIC program}
ii. ERT HOT_CMD (d,wdir) {directory listing}
iii. ERT HOT_CMD (r, ' INPUT "Run> ";prg$' , ' LRUN prg$')

{prompt for name of, and LRUN a program, note the use of quotes within the
 string delimited by apostrophes}

HOT_DO hotkey system
HOT_DO allows a previously defined Hotkey to be activated from SBASIC. The Hotkey system
interprets the HOT_DO command as if the Hotkey had been pressed.

syntax: key:= character_string {single character string in the range 32 to 191}

HOT_DO key | name

example: 10 ERT HOP_CHP (q, Quill, p) {set Quill on ALT-Q}
20 HOT_DO 'Quill' {start Quill, without pressing ALT-Q}

04/23 63

HOT_GETSTUFF$ hotkey system
HOT_GETSTUFF$ will return the current, or previous content of the Stuffer Buffer.

If no parameter is supplied, or the parameter is 0, Then the current content of the Stuffer Buffer
is returned. If the supplied parameter is –1, Then the previous content of the Stuffer Buffer is
returned.

syntax: HOT_GETSTUFF$ [(0 | -1)]

example: i. HOT_STUFF “abc”,”def” {fill Stuffer Buffer}
ii. PRINT HOT_GETSTUFF$ {displays “abcdef”}
iii. HOT_STUFF “123” {fill Stuffer Buffer again}
iv. PRINT HOT_GETSTUFF$ (0) {displays “123”}
v. PRINT HOT_GETSTUFF$ (-1) {displays “abcdef”}

HOT_GO
HOT_STOP hotkey system
HOT_GO and HOT_STOP will start and stop the Hotkey system.

The Hotkey system is designed to remain dormant until all resident extensions have been
loaded. It is then activated by the HOT_GO command.

If, at any time, you wish to add more resident extensions to QPC2, you can remove the
HOTKEY Job using the RJOB command or the HOT_STOP command.

Neither HOT_GO nor HOT_STOP have any parameters.

syntax: HOT_GO {start HOTKEY Job}
HOT_STOP {stop HOTKEY Job}

HOT_KEY hotkey system
The HOT_KEY function is used to set up Hotkeys to copy strings of keystrokes into the current
keyboard queue.

When the appropriate Hotkey is pressed, each of the strings is sent to the keyboard queue,
separated by a new line (Enter) character.

You can specify as many lines as you like. If you one or more new lines after the last HOT_KEY
string, you should put one of more empty (null) strings at the end of the list.

The function will return one of the following error codes:
 0 - No error
-9 - In use (Hotkey is already being used for some other operation)

syntax: key:= character_string {single character string in the range 32 to 191}

HOT_KEY (key, string *[,string]*)

example: i. ERT HOT_KEY ("s" , "Dear Sir," , "" , "") {two new lines at end}
ii. ERT HOT_KEY ("e" , "Yours sincerely" , "" , "" , " Joe Bloggs")
iii. ERT HOT_KEY ("p" , CHR$(232) & "PD" , "NP") {print from abacus}

comment: HOT_KEY is very similar to the ALTKEY command.

64 04/23

HOT_LIST hotkey system
HOT_LIST will send to the specified or default channel , the current list of Hotkey assignments.

syntax: HOT_LIST [#channel]
HOT_LIST filename

example: i. HOT_LIST {list Hotkeys to #1}
ii. HOT_LIST ram1_keys {list to file "ram1_keys"}

HOT_LOAD
HOT_LOAD1 hotkey system
HOT_LOAD will set up a Hotkey to load and execute a program from disk, that is not required
frequently enough to justify making it resident. This is similar to the HOT_RES and HOT_CHP,
but the program is not loaded until required. It follows, of course, that the disk with the program
file must be available at the time you press the Hotkey.

HOT_LOAD1 is the same as HOT_LOAD, except that it sets up a Wake Hotkey. When you
press the Hotkey, if there is already a Job of the same name executing, then it will be Picked
and Woken, otherwise a new copy will be executed.

Jobs may be identified by a name, which is normally the program name. This name is to be
found in the base area of a standard program. It is possible, however, to specify a different
name for a Job when you set up the Hotkey.

To persuade the HOTKEY system to execute a Job with Unlocked windows, you need to add
the single parameter "U" to the function parameter list. To provide a "Guardian" window to
preserve the whole area used by the Job, you need to add the single parameter "G" to the
function parameter list. Optionally, you may follow this by the window area (size, position) of the
Guardian window as four numbers. Any attempt by a program to open or redefine a window
outside its Guardian will fail. To execute a Job so that it will be frozen when its windows are
buried, you add the single parameter "F" to the parameter list. To prevent the program from
taking too much memory, you add the parameter "P", optionally followed by the amount of
memory (in kilo bytes) the program may take.
Note that "U", "G", "P" or "F" can be used after the "I" option for impure programs which modify
there own code.

The function will return one of the following error codes:
 0 - No error
-9 - In use (Hotkey is already being used for some other operation)

syntax: key:= character_string {single character string in the range 32 to 191}
params:= string {list of parameters for individual programs}
options:= [I,] U

 | G [width, height, xorg, yorg]
 | P [memory]
 | F

HOT_LOAD (key, filename [;params] [,jobname] [,options])
HOT_LOAD (key, filename [;params] [,jobname | !wakename] [,options])

example: ERT HOT_LOAD (f, qtyp_file) {Load and execute Qtyp_File on ALT F}

04/23 65

HOT_NAME$ hotkey system
The HOT_NAME$ function will return the name associated with the supplied Hotkey.

The function will return a null (empty) string if the Hotkey is not defined.

syntax: key:= character_string {single character string in the range 32 to 191}

HOT_NAME$ (key)

example: PRINT HOT_NAME$ ('a') {display the name associated with the key ALT-a}

HOT_OFF
HOT_SET hotkey system
HOT_OFF and HOT_SET will turn off and on, or change individual Hotkey operations.

The functions will return one of the following error codes:
 0 - No error
-7 - Not found (Old key or name cannot be found)
-9 - In use (New key is already in use, HOT_SET only)

syntax: key:= character_string {single character string in the range 32 to 191}
newkey:= key
oldkey:= key

HOT_OFF (key | name)
HOT_SET (key | name)
HOT_SET (newkey, oldkey | name)

example: i. ERT HOT_OFF ('c') {switch off ALT-c}
ii. ERT HOT_SET ('h','r') {ALT-h now does what ALT-r used to}

comment: The name is the program or Thing name for execute and Pick type Hotkeys, or the
string or command for HOT_KEY and HOT_CMD Hotkeys.

HOT_PICK hotkey system
The HOT_PICK function sets up a Hotkey to Pick a Job of a particular name, so that you may
work with it.

The Job name is usually embedded at the start of the program file. For pure programs set up by
HOT_RES and HOT_CHP, this name is replaced if you specify a Job name. For Psion
programs, which do not have a name at the start, HOT_CHP, etc, will set the Job name to be
the same as the program file name.

You do not need to specify the complete Job name, just the first word in the name. This is useful
for programs which add extra information after the program name (e.g. the Files menu of QPAC
2, which adds a directory name after the Job name). If there is more than one Job with a
matching name, each Job will be Picked in turn.

The function will return one of the following error codes:
 0 - No error
-9 - In use (Hotkey is already being used for some other operation)

syntax: key:= character_string {single character string in the range 32 to 191}

HOT_PICK (key, jobname)

example: i. ERT HOT_PICK ('1' , Quill) {pick Quill on ALT 1}
ii. ERT HOT_PICK ('2' , Abacus) {pick Abacus on ALT 2}

66 04/23

HOT_REMV hotkey system
The HOT_REMV function will turn the Hotkey off, and remove the definition as well.

If the Hotkey was set up using HOT_CHP, the Executable Thing and any Jobs using it are
removed.

HOT_REMV will usually need to be used to remove a Hotkey definition before re-using the
particular Hotkey. Unless HOT_KEY or HOT_CMD are being used to re-define a string or
command respectively.

syntax: key:= character_string {single character string in the range 32 to 191}

HOT_REMV (key | name)

example: 10 ERT HOT_CHP (q, Quill, p) {Quill on ALT Q}
20 ERT HOT_OFF (q) {ALT Q turned off}
30 ERT HOT_SET (q) {ALT Q back on}
40 ERT HOT_SET (z,q) {Quill now on ALT Z}
50 ERT HOT_REMV (Quill) {Quill gone completely

HOT_STUFF hotkey system
HOT_STUFF will place the supplied strings into the Stuffer Buffer. The first string is put in the
buffer first, immediately followed by the second string (if present).

The next time you press ALT SPACE the strings will be copied into the current keyboard queue
as if you had just typed them.

syntax: HOT_STUFF string1 [,string2]

example: i. HOT_STUFF DATE$ {place time and date into Stuffer Buffer}
ii. HOT_STUFF "Dear Sir", CHR$(13)&CHR$(13)

{place 'Dear Sir' and the Enter key twice}

04/23 67

HOT_THING
HOT_THING1 hotkey system
HOT_THING will set up a Hotkey to execute an Executable Thing. The Thing need not have
been created at the time the Hotkey is set up. QPAC 2 is implemented as a collection of
(mostly) Executable Things. The HOT_RES and HOT_CHP functions create an Executable
Thing for each program set up on a Hotkey.

The HOTKEY system 2 is a non-executable Thing.

HOT_THING1 is the same as HOT_THING, except that it sets up a Wake Hotkey. When you
press the Hotkey, if there is already a Job of the same name executing, then it will be Picked
and Woken, otherwise a new copy will be executed.

Jobs may be identified by a name, which is normally the program name. This name is to be
found in the base area of a standard program. It is possible, however, to specify a different
name for a Job when you set up the Hotkey.

The function will return one of the following error codes:
 0 - No error
-9 - In use (Hotkey is already being used for some other operation)

syntax: key:= character_string {single character string in the range 32 to 191}
params:= string {list of parameters for individual programs}

HOT_THING (key, thingname [;params] [,jobname])
HOT_THING1 (key, thingname [;params] [,jobname | !wakename])

example: ERT HOT_THING (' f , Files) {Execute QPAC 2 Files Menu on ALT F}

HOT_TYPE hotkey system
The HOT_TYPE function will return the type of action associated with the supplied Hotkey.

The types returned by HOT_TYPE are

-8 last line recall
-6 stuff keyboard queue with previous stuffer string
-4 stuff keyboard queue with current stuffer string
-2 stuff keyboard queue with defined string
 0 pick SBASIC and stuff command
 2 do code
 4/5 execute Thing
 6 execute file
 8 pick Job
 10/11 wake or execute Thing
 12 wake / execute file
-7 not defined

syntax: key:= character_string {single character string in the range 32 to 191}

HOT_TYPE (key)

example: PRINT HOT_TYPE ('c') {display the Hotkey type of the key ALT-c}

68 04/23

HOT_WAKE hotkey system
HOT_WAKE is a variation of HOT_PICK which will set up a Hotkey to Wake a Job when
Picking it. Hotkeys set up by HOT_WAKE go a little further than this: if there is no Job of the
required name executing at the time you press the Hotkey, then, if there is an Executable Thing
of the same name, this will be Executed.

Even if a program does not recognize a Wake Event, this Hotkey can still be used to Pick or
Execute the program.

This is most useful for accessing Executable Things that you will only ever want one copy
executing at a time. It is, for example, pointless having more than one copy of the QPAC 2
EXEC menu. If you set up a HOT_WAKE Hotkey for EXEC, the first time you use it you will
Execute the EXEC Thing. Until you remove the EXEC Job, every time you use this Hotkey, the
EXEC menu will be Picked and Woken.

The function will return one of the following error codes:
 0 - No error
-9 - In use (Hotkey is already being used for some other operation)

syntax: key:= character_string {single character string in the range 32 to 191}
params:= string {list of parameters for individual programs}

HOT_WAKE (key, thingname [;params] [,jobname | ! wakename])

example: ERT HOT_WAKE ('x', 'Exec')

comment: For normal programs, the best way of using this function is to create an Executable
Thing using one of the HOT_RES or HOT_CHP functions, and then define a second
Hotkey to Wake the Thing. Quite a neat way of doing this is to use a lower case
Hotkey to Wake the program, and the corresponding upper case Hotkey to create a
new copy.

ERT HOT_RES (' D', ' QD') {Set up QD to Execute on ALT D}
ERT HOT_WAKE (' d', ' QD') {Set up to Wake or Execute on ALT d}

IF
THEN
ELSE
END IF
The IF statement allows conditions to be tested and the outcome of that test to control
subsequent program flow.

The IF statement can be used in both a long and a short form:

SHORT: The THEN keyword is followed on the same logical line by a sequence of SBASIC
keyword. This sequence of SBASIC statements may contain an ELSE keyword. If
the expression in the IF statement is true (evaluates to be non-zero), then the
statements between the THEN and the ELSE keywords are processed. If the
condition is false (evaluates to be zero) then the statements between the ELSE and
the end of the line are processed.

If the sequence of SBASIC statements does not contain an ELSE keyword and if the
expression in the IF statement is true, then the statements between the THEN
keyword and the end of the line are processed. If the expression is false then
processing continues at the next line.

04/23 69

syntax: statements:= statement *[: statement]*

 IF expression THEN statements [:ELSE statements]

example: i. IF a=32 THEN PRINT "Limit" : ELSE PRINT "OK"
 ii. IF test >maximum THEN LET maximum = test
 iii. IF "1"+1=2 THEN PRINT "coercion OK"

LONG 1: The THEN keyword is the last entry on the logical line. A sequence of SBASIC
statements is written following the IF statements. The sequence is terminated by the
END IF statement. The sequence of SBASIC statements is executed if the
Expression contained in the IF statement evaluates to be non zero. The ELSE
keyword and second sequence of SBASIC statements are optional.

LONG 2: The THEN keyword is the last entry on the logical line. A Sequence of SBASIC
statements follows on subsequent lines, terminated by the ELSE keyword. If the
expression contained in the IF statement evaluates to be non zero then this first
sequence of SBASIC statements is processed. After the ELSE keyword a second
sequence of SBASIC statements is entered, terminated by the END IF keyword. If
the expression evaluated by the IF statement is zero then this second sequence of
SBASIC statements is processed.

syntax: IF expression THEN
 statements
 [ELSE
 statements]
 END IF

example: 100 LET Limit =10
 110 INPUT "Type in a number" ! number
 120 IF number > limit THEN
 130 PRINT "Range error"
 140 ELSE
 150 PRINT "Inside Limit"
 160 END IF

comment: In all three forms of the IF statement the THEN is optional. In the short form it
must be replaced by a colon to distinguish the end of the IF and the start of the
next statement. In the long form it can be removed completely.

nesting: IF statements may be nested as deeply as the user requires (subject to available
memory). However, confusion may arise as to which ELSE, END IF etc, matches
which IF. SBASIC will match nested ELSE statements etc, to the closest IF
statement, for example:

 100 IF a = b THEN
 110 IF c = d THEN
 120 PRINT "error"
 130 ELSE
 140 PRINT "no error"
 150 END IF
 160 ELSE
 170 PRINT "not checked"
 180 END IF

The ELSE at line 130 is matched to the second IF. The ELSE at line 160 is
matched with the first IF (at line 100).

70 04/23

INK
WM_INK windows
This sets the current ink colour, i.e. the colour in which the output is written. INK will be effective
for the window attached to the specified or default channel.

WM_INK will set the colour of the ink using one of the Windows Manager colour palettes.

syntax: INK [channel,] colour
WM_INK [channel,] wm_colour

example: i. INK 5
 ii. INK 6,2
 iii. INK #2,255

iv. WM_INK $0202

INKEY$
INKEY$ is a function which returns a single character input from either the specified or default
channel.

An optional timeout can be specified which can wait for a specified time before returning, can
return immediately or can wait forever. If no parameter is specified then INKEY$ will return
immediately.

syntax: INKEY$ [|(channel)
 |(channel, time)
 |(time)]

where: time = 1..32767 {wait for specified number of frames.
In the UK 50 Frames = 1 Second
In the US 60 Frames = 1 Second}

 time = -1 {wait forever}
 time = 0 {return immediately}

example: i. PRINT INKEY$ {input from the default channel}
 ii. PRINT INKEY$(#4) {input from channel 4}

iii. PRINT INKEY$(50) {wait for 50 frames then return anyway}
 iv. PRINT INKEY$(0) {return immediatly (poll the keyboard)}
 v. PRINT INKEY$(#3,100) {wait for 100 frames for an input from channel 3 then

 return anyway}

comment: If no character was available when INKEY$ times out, then a Null (CHR$(0)) will be
returned.

04/23 71

INPUT
INPUT allows data to be entered into a SBASIC program directly from the PC’s keyboard by the
user. SBASIC halts the program until the specified amount of data has been input; the program
will then continue. Each item of data must be terminated by the ENTER key.

INPUT will input data from either the specified or the default channel.

If input is required from a particular console channel the cursor for the window connected to that
channel will appear and start to flash.

syntax: separator:= |!
 |,
 |\
 |;
 | TO

 prompt:= [channel,] expression separator

 INPUT [prompt] [channel] variable *[,variable]*

example: i. INPUT ("Last guess "& guess & "New guess?") ! guess
 ii. INPUT "What is your guess?"; guess
 iii. 100 INPUT "array size?" ! Limit
 110 DIM array(limit-1)
 120 FOR element = 0 to Limit-1
 130 INPUT ("data for element" & element) array(element)
 140 END FOR element
 150 PRINT array

iv. INPUT#3,x$

INSTR operator
INSTR is an operator which will determine if a given substring is contained within a specified
string. If the string is found then the substring's position is returned. If the string is not found
then INSTR returns zero.

Zero can be interpreted as false, i.e. the substring was not contained in the given string. A non
zero value, the substrings position, can be intepreted as true, i.e. the substring was contained in
the specified string.

syntax: string_expression INSTR string expression

example: i. PRINT "a" INSTR "cat" {will print 2}
 ii. PRINT "CAT" INSTR "concatenate" {will print 4}
 iii. PRINT "x" INSTR "eggs" {will print 0}

INSTR_CASE
INSTR_CASE allows the type of string comparison to be used by INSTR to be set as either
case independent (default), or case dependent.

syntax: INSTR_CASE 0 | 1

example: i. INSTR_CASE 0 {INSTR is now case independent. (SuperBASIC
 compatible)}

ii. INSTR_CASE 1 {INSTR now does direct byte by byte comparisons }

comment: The internal INSTR_CASE flag is cleared on NEW, LOAD, MERGE and RUN.

72 04/23

INT maths functions
INT will return the integer part of the specified floating point
expression.

syntax: INT (numeric_expression)

example: i. PRINT INT(X)
 ii. PRINT INT(3.141592654/2)

IO_PRIORITY
IO_PRIORITY sets the priority of the I/O retry operations. In effect, this sets a limit on the time
spent by the scheduler retrying I/O operations.

A priority of one sets the I/O retry scheduling policy to the same as QDOS, thus giving a similar
level of response but with a higher crude performance.

syntax: level:= numeric expression

IO_PRIORITY level

example: i. IO_PRIORITY 1 {QDOS levels of response, higher crude performance}
ii. IO_PRIORITY 2 {QDOS levels of performance, better response under

 load}
iii. IO_PRIORITY 10 {Much better response under load, degraded

 performance}
iv. IO_PRIORITY 1000 {Maximum response, the performance depends on the

 number of jobs waiting for input.}

JOBID multitasking
JOBID will return the 32-bit ID of the given job details as a decimal value. The optional
parameters may be either a job number and job tag (as displayed by the JOBS command), or
the job name.

If no parameters are supplied, the Job ID number of the current job is returned.

syntax: job_identifier:= | job_number , tag_number
| job_number + (tag_number * 65536)

id:= job_identifier
name:= | name

 | string_expression

JOBID [(id | name)]

example: i. PRINT JOBID
ii. PRINT JOBID(6,5)
iii. PRINT JOBID(pick)

04/23 73

JOBS multitasking
JOBS is a command to list to the window attached to the specified or default channel, all the
Jobs running in QPC2 at the time. If there are more Jobs in the machine than can be listed in
the output window, the procedure will freeze the screen (CTRL F5) when it is full. The procedure
may fail if Jobs are removed from QPC2 while the procedure is listing them.

syntax: JOBS [#channel] {list current Jobs}
JOBS \device {list Jobs to 'device'}

The following information is given for each Job

The Job number
The Job tag
The Job's owner Job number
A flag 'S' if the Job is suspended
The Job priority
The Job (or program) name.

JOB$, NXJOB
OJOB, PJOB multitasking
JOB$, NXJOB, OJOB, and PJOB are Job status functions provided to enable an SBASIC
program to scan the Job tree and carry out complex Job control procedures.

JOB$ will return as a string the name of the Job.

NXJOB is a rather complex function. The first parameter is the id of the Job currently being
examined, the second is the id of the Job at the top of the tree. If the first id passed to NXJOB is
the last Job owned, directly or indirectly, by the 'top Job', then NXJOB will return the value 0,
otherwise it will return the id of the next Job in the tree.

OJOB will return Job identifier of the owner of the Job.

PJOB will return priority of the job.

syntax: job_identifier:= | job_number , tag_number
| job_number + (tag_number * 65536)

id:= job_identifier

JOB$ (id | name)
NXJOB (id | name)
OJOB (id | name)
PJOB (id | name , top_job_id)

example: i. PRINT JOB$ (3,8) {will output name of Job}
ii. PRINT OJOB (demon) {will output the id of the owner of Job ‘demon’}
iii. PRINT PJOB (2,1) {will output the priority of the Job}

comment: Job 0 always exists and owns directly or indirectly all other Jobs in QPC2. Thus a
scan starting with id = 0 and top Job id = 0 will scan all Jobs in QPC2.

It is possible that, during a scan of the tree, a Job may terminate. As a precaution
against this happening, the Job status functions return the following values if called
with an invalid Job id:

PJOB=0 OJOB=0 JOB$='' NXJOB=-1

74 04/23

JOB_NAME multitasking
JOB_NAME can be used to give a name to an SBASIC Job. It may appear anywhere within a
program and may be used to reset the name whenever required. This command has no effect
on compiled BASIC programs or Job 0.

syntax: JOB_NAME string_expression

example: i. JOB_NAME Killer {sets the Job name to "Killer"}
ii. JOB_NAME "My little Job" {sets the Job name to "My little Job"}

KBD_TABLE
KBD_TABLE will set the keyboard layout to be used.

syntax: lang:= language_code | registration

KBD_TABLE lang

example: i. KBD_TABLE GB {keyboard table set to English}
ii. KBD- TABLE 33 {keyboard table set to French}

comment: Private keyboard tables may also be loaded.
i= RESPR (512): LBYTES "kt",i: KBD_TABLE i {keyboard table set to

 table in "kt"}

For compatibility with older drivers, a "private" keyboard table loaded in this way
should not be prefaced by flag word.

04/23 75

KEYROW
KEYROW is a function which looks at the instantaneous state of a row of keys (the table below
shows how the keys are mapped onto a matrix of 8 rows by 8 columns). KEYROW takes one
parameter, which must be an integer in the range 0 to 7: this number selects which row is to be
looked at. The value returned by KEYROW is an integer between 0 and 255 which gives a
binary representation indicating which keys have been depressed in the selected row.

Since KEYROW is used as an alternative to the normal keyboard input mechanism using
INKEY$ or INPUT, any character in the keyboard type-ahead buffer are cleared by KEYROW:
thus key depressions which have been made before a call to KEYROW will not be read by a
subsequent INKEY$ or INPUT.

Note that multiple key depressions can cause surprising results. In particular, if three keys at the
corner of a rectangle in the matrix are depressed simultaneously, it will appear as if the key at
the fourth corner has also been depressed. The three special keys CTRL, SHIFT and ALT are
an exception to this rule, and do not interact with other keys in this way.

syntax: row:= numeric_expression {range 0..7}

 KEYROW (row)

example: 100 REMark run this program and press a few keys
 110 REPeat loop
 120 CURSOR 0,0
 130 FOR row = 0 to 7
 140 PRINT row !!! KEYROW(row) ;" "
 150 END FOR row
 160 END REPeat loop

KEYBOARD MATRIX
COLUMN
ROW 1 2 4 8 16 32 64 128

7 I SHIFT CTRL ALT X V / N ,
6 | 8 2 6 Q E 0 T U
5 | 9 W I TAB R - Y O
4 | L 3 H 1 A P D J
3 | [CAPS K S F = G ;
2 |] Z . C B ` M ‘
1 | C/R left up ESC right SPC down
0 | F4 F1 5 F2 F3 F5 4 7

76 04/23

LANGUAGE
LANGUAGE$
LANGUAGE and LANGUAGE$ will return the currently set language, or to find the language
that would be used if a particular language were requested. They can also be used to convert
the language (dialling code) into a car registration and vice versa.

Language Code Car Registration Language and Country
39 IT Italian (in Italy)
34 E Spanish (in Spain)
33 F French (in France)
44 GB English (in England)
45 DK Danish (in Denmark)
46 S Swedish (in Sweden)
47 N Norwegian (in Norway)
49 D German (in Germany)
1 USA English(US) (in USA)

LANGUAGE will return the language code, and LANGUAGE$ will return the car registration.

syntax: lang:= language_code | registration

LANGUAGE [(lang)]
LANGUAGE$ [(lang)]

example: i. PRINT LANGUAGE {returns the current language}
ii. PRINT LANGUAGE$ {the car registration of the current language}
iii. PRINT LANGUAGE (F) {the language corresponding to F}
iv. PRINT LANGUAGE$ (45) {the car registration corresponding to 4}
v. PRINT LANGUAGE (977) {the language that would be used for Nepal}

04/23 77

LANG_USE
LANG_USE will set the language used by the system messages. This sets the Operating
System language word, and then scans the language dependent module list selecting modules
and filling in the message table.

A language may be specified either by an international dialling code or an international car
registration code. These codes may be modified by the addition of a digit where a country has
more than one language.

Language Code Car Registration Language and Country
39 IT Italian (in Italy)
34 E Spanish (in Spain)
33 F French (in France)
44 GB English (in England)
45 DK Danish (in Denmark)
46 S Swedish (in Sweden)
47 N Norwegian (in Norway)
49 D German (in Germany)
1 USA English(US) (in USA)

syntax: lang:= language_code | registration

LANG_USE lang

example: i. LANG_USE 33 {set language to French}
ii. LANG_USE D {set language to German}
iii. LANG_USE 'g'&'b' {set language to English}

warning: if you assign a value to a variable, then you will not be able to use that variable
name to specify the car registration letters.

D=33: LANG_USE D {set language to French (dialling code 33)
 rather than German (car registration D)}

78 04/23

LBYTES devices, directory devices
LBYTES will load a data file into memory at the specified start address.

If a channel number of an open channel is supplied in place of a filename, then LBYTES will
attempt to load the file from the channel.

syntax: start_address:= numeric_expression
device:= filename | channel

 LBYTES device ,start_address

example: i. LBYTES flp1_screen, SCR_BASE
{load a screen image}

ii. LBYTES win1_program, start_address
{load a program at a specified address}

iii. 10 OPEN#5,flp1_data {open a channel}
20 address = ALCHP(FLEN(#5)) {get file length and allocate space}
30 LBYTES#5,address {load the file}
40 CLOSE#5 {close the channel}

LEN string arrays
LEN is a function which will return the length of the specified string expression.

syntax: LEN(string_expression)

example: i. PRINT LEN("LEN will find the length of this string")
 ii. PRINT LEN(output_string$)

LET
LET starts a SBASIC assignment statement. The use of the LET keyword is optional. The
assignment may be used for both string and numeric assignments. SBASIC will automatically
convert unsuitable data types to a suitable form wherever possible.

syntax: [LET] variable = expression

example: i. LET a = 1 + 2
 ii. LET a$ = "12345"
 iii. LET a$ = 6789
 iv. b$ = test_data

04/23 79

LINE
LINE_R
LINE allows a straight line to be drawn between two points in the window attached to the default
or specified channel. The ends of the line are specified using the graphics coordinate system.

Multiple lines can be drawn with a single LINE command.

The normal specification requires specifying the two end points for a line. These end points can
be specified either in absolute coordinates (relative to the graphics origin) or in relative
coordinates (relative to the graphics cursor). If the first point is omitted then a line is drawn from
the graphics cursor to the specified point. If the second point is omitted then the graphics cursor
is moved but no line is drawn.

LINE will always draw with absolute coordinates, i.e. relative to the graphics origin, while
LINE_R will always draw relative to the graphics cursor.

syntax: x:= numeric_expression
 y:= numeric_expression
 point:= x,y

 parameter_2:= | TO point (1)
 | ,point TO point (2)

 parameter_1:= | TO point, angle (1)
 | TO point (2)
 | point (3)

LINE [channel,] parameter_1 *[, parameter_2]*
LINE_R [channel,] parameter_1 *[,parameter_2]*

Where (1) will draw from the specified point to the next specified point
 (2) will draw from the last point plotted to the specified point
 (3) will move to the specified point, - no line will be drawn

example: i. LINE 0,0 TO 0, 50 TO 50,0 TO 50,0 TO 0,0 {a square}
 ii. LINE TO 0.75, 0.5 {a line}
 iii. LINE 25,25 {move the graphics cursor}

LIST
LIST allows a SBASIC line or group of lines to be listed on a specific or default channel.

syntax: line:= | line_number TO line_number (1)
 | line_number TO (2)
 | TO line_number (3)
 | line_number (4)
 | (5)

 LIST [channel,] line*[,line]*

where (1) will list from the specified line to the specified line
 (2) will list from the specified line to the end
 (3) will list from the start to the specified line
 (4) will list the specified line
 (5) will list the whole program

example: i. LIST {list all lines}
 ii. LIST 10 TO 300 {list lines 10 to 300}
 iii. LIST 12,20,50 {list lines 12,20 and 50 only}

If LIST output is directed to a channel opened as a printer channel then LIST will provide hard
copy.

80 04/23

LIST_AY programmable sound generator
LIST_AY will set the values of the designated AY-3 chips registers. There are two AY-3 chips
emulated in QPC, designated as 0, and 1. If no chip parameter is supplied, then chip 0 will be
default one used.

Fourteen registers may be set by this command.

Register Usage Valid values
0 channel A tone LSB {0 to 255}
1 channel A MSB {0 to 15}
2 channel B tone LSB {0 to 255}
3 channel B MSB {0 to 15}
4 channel C tone LSB {0 to 255}
5 channel C MSB {0 to 15}
6 noise period {0 to 15}
7 release {0 to 255}
8 channel A amplitude {0 to 31}
9 channel B amplitude {0 to 31}
10 channel C amplitude {0 to 31}
11 envelope period LSB {0 to 255}
12 envelope period MSB {0 to 255}
13 envelope curve {0 to 15}

syntax: ay_chip:= numeric_expression {0 or 1}
rx:= numeric_expression {0 to 255}

LIST_AY [ay_chip,] r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13

example: i. LIST_AY 100, 5, 50, 3, 0, 0, 6, 0, 15, 15, 15, 0, 0, 10
ii. LIST_AY 1, 100, 5, 50, 3, 0, 0, 6, 0, 15, 15, 15, 0, 0, 10 {as above but chip 1}
iii. LIST_AY 0, 0, 0, 0, 0, 0, 15, 55, 16, 0, 0, 160, 15, 0 {gunshot}

note: For more information on the AY-3 sound system, see the QPC Concepts document.

warning: Currently LIST_AY does not work correctly if the chip number is supplied. So you
can only set the default chip 0.

The following procedure SET_AY, will do the same as LIST_AY
All parameters must be supplied.

1000 DEFine PROCedure SET_AY chip,r0,r1,r2,r3,r4,r5,r6,r7,r8,r9,
r10,r11,r12,r13)

1010 REMark Replacement LISY_AY command
1020 POKE_AY chip,0,r0
1030 POKE_AY chip,1,r1
1040 POKE_AY chip,2,r2
1050 POKE_AY chip,3,r3
1060 POKE_AY chip,4,r4
1070 POKE_AY chip,5,r5
1080 POKE_AY chip,6,r6
1090 POKE_AY chip,7,r7
1100 POKE_AY chip,8,r8
1110 POKE_AY chip,9,r9
1120 POKE_AY chip,10,r10
1130 POKE_AY chip,11,r11
1140 POKE_AY chip,12,r12
1150 POKE_AY chip,13,r13
1160 END DEFine SET_AY

04/23 81

LN
LOG10 maths functions
LN will return the natural logarithm of the specified argument. LOG10 will return the common
logarithm. There is no upper limit on the parameter other than the maximum number the
computer can store.

syntax: LOG10 (numeric_expression) {range greater than zero}
 LN (numeric_expression) {range greater than zero}

example: i. PRINT LOG10(20)
 ii. PRINT LN(3.141592654)

LOAD
QLOAD devices, directory devices
LOAD will load a SBASIC program from any QPC2 device. LOAD automatically performs a
NEW before loading another program, and so any previously loaded program will be cleared by
LOAD.

QLOAD will load an SBASIC program which has been saved by QSAVE or QSAVE_O and has
a _SAV at the end of the filename.

If a line input during a load has incorrect SBASIC syntax, the word MISTAKE is inserted
between the line number and the body of the line. Upon execution, a line of this sort will
generate an error

syntax: LOAD device
QLOAD device

example: i. LOAD "flp2_test_program"
 ii. LOAD ram1_guess
 iii. QLOAD flp1_program
 iv. LOAD ser1_e

v. QLOAD dev1_program_sav
vi. OPEN_IN#4,pipe_alpha

LOAD#4
{load a program from a channel }

LOCal functions and procedures
LOCal allows identifiers to be defined to be LOCal to a function or procedure. Local identifiers
only exist within the function or procedure in which they are defined, or in procedures and
functions called from the function or procedure in which they are defined.
They are lost when the function or procedure terminates. Local identifiers are independent of
similarly named identifiers outside the defining function or procedure. Arrays can be defined to
be local by dimensioning them within the LOCal statement.

The LOCal statement must precede the first executable statement in the function or procedure
in which it is used.

syntax: LOCal identifier *[, identifier]*

example: i. LOCal a,b,c(10,10)
 ii. LOCal temp_data

comment: Defining variables to be LOCal allows variable names to be used within functions
and procedures without corrupting meaningful variables of the same name
outside the function or procedure.

82 04/23

LRESPR devices
LRESPR opens the file to be loaded and finds the length of the file, then reserves space for the
file in the resident procedure area, or the common heap, before loading the file. Finally a CALL
is made to the start of the file.

syntax: LRESPR name

example: LRESPR win1_basic_ext {load and call the SBASIC extensions
 Win1_basic_ext}

LRUN
QLRUN devices, directory devices
LRUN will load and run a SBASIC program from a specified device. LRUN will perform NEW
before loading another program and so any previously stored SBASIC program will be cleared
by LRUN.

QLRUN will load an SBASIC program which has been saved by QSAVE or QSAVE_O and has
a _SAV at the end of the filename.

If a line input during a loading has incorrect SBASIC syntax, the word MISTAKE is inserted
between the line number and the body of the line. Upon execution, a line of this sort will
generate an error.

syntax: LRUN device
QLRUN device

example: i. LRUN flp2_TEST
 ii. LRUN ram1_game

iii. QLRUN win1_applications_editor

MACHINE SMSQ/E
MACHINE will return the machine type that SMSQ/E is running on

syntax: MACHINE

example: PRINT MACHINE

comment: MACHINE will return 30 for QPC2.

04/23 83

MAKE_DIR
FMAKE_DIR directory devices
The command MAKE_DIR is used to create a new subdirectory on a directory device. It takes
one parameter: the subdirectory filename.

FMAKE_DIR is a function to perform the same operation as MAKE_DIR. But will return a value
of zero for no error, or a negative number if an error occurs.

Error code -7 not found Medium or drive is not available
-8 already exists Already directory/file of that name
-9 in use Already directory/file of that name
-15 bad parameter Device cannot handle subdirectories

syntax: MAKE_DIR filename
ferr = FMAKE_DIR (filename)

example: i. MAKE_DIR flp2_letters_
ii. error_code = FMAKE_DIR (“dev1_files_”)

comment: If there are any files which, by virtue of their names, would belong in the directory
being made, then these files will be transferred to the new directory, even if they are
open.

To remove a subdirectory, firstly delete it’s contents then delete the subdirectory
Itself. COPY and WCOPY deal only with files at the specified directory level.
Subdirectories can also be applied to RAM disks.

MERGE
QMERGE devices, directory devices
MERGE will load a file from the specified device and interpret it as a SBASIC program. If the
new file contains a line number which doesn't appear in the program already in QPC2 then the
line will be added. If the new file contains a replacement line for one that already exists then the
line will be replaced. All other old program lines are left undisturbed.

QMERGE will load an SBASIC program which has been saved by QSAVE or QSAVE_O and
has a _SAV at the end of the filename.

If a line input during a MERGE has incorrect SBASIC syntax, the word MISTAKE is inserted
between the line number and the body of the line. Upon execution, a line of this sort will
generate an error.

syntax: MERGE device
QMERGE device

example: i. MERGE win1_overlay_program
 ii. QMERGE flp1_new_data

MOD operators
MOD is an operator which gives the modulus, or remainder; when one integer is divided by
another.

syntax: numeric_expression MOD numeric_expression

example: i. PRINT 5 MOD 2 {will print 1}
 ii. PRINT 5 MOD 3 {will print 2}

84 04/23

MODE windows
MODE sets the resolution of the screen and the number of solid colours which it can display.
MODE will clear all windows currently on the screen, but will preserve their position and shape.
Changing to low resolution mode (8 colour) will set the minimum character size to 2,0.

MODE now only seems to have any effect in 512 x 256 QL colour mode.

syntax: MODE numeric_expression

where: 8 or 256 will select low resolution mode
 4 or 512 will select high resolution mode

example: i. MODE 256
 ii. MODE 4

MOUSE_SPEED
MOUSE_SPEED adjusts the mouse acceleration and wake up factor for the specified or default
channel. From QPC2 version 2 on the acceleration is of no more use as the mouse position is
adapted from Windows. The wakeup factor however is still valid and ranges from 1 to 9 with 1
being the most sensitive one.

syntax: acceleration:= numeric_expression
wakeup:= numeric_expression

MOUSE_SPEED [#channel,] acceleration, wakeup

MOUSE_STUFF
MOUSE_STUFF adjusts the string that is stuffed into the keyboard queue of the specified or
default if the middle mouse button is pressed. The string cannot be longer than 2 characters, but
this is enough to trigger any hotkey, which can in turn do almost everything.

syntax: MOUSE_STUFF [#channel,] string

example: i. MOUSE_STUFF ‘.’ {Generates a dot if middle mouse
 button is pressed}

ii. MOUSE_STUFF CHR$(255)&’.’ {Generates hotkey Alt +}

MOVE turtle graphics
MOVE will move the graphics turtle in the window attached to the default or specified channel a
specified distance in the current direction. The direction can be specified using the TURN and
TURNTO commands. The graphics scale factor is used in determining how far the turtle actually
moves. Specifying a negative distance will move the turtle backwards.

The turtle is moved in the window attached to the specified or default channel.

syntax: distance:= numeric_expression

 MOVE [channel,] distance

example: i. MOVE #2,20 {move the turtle in channel 2 20 units forwards}
 ii. MOVE -50 {move the turtle in the default channel 50 units backwards}

04/23 85

MRUN
QMRUN devices, directory devices
MRUN will interpret a file as a SBASIC program and merge it with the currently loaded program.

If used as direct command MRUN will run the new program from the start. If used as a program
statement MRUN will continue processing on the line following MRUN.

QMRUN will load an SBASIC program which has been saved by QSAVE or QSAVE_O and has
a _SAV at the end of the filename.

If a line input during a merge has incorrect SBASIC syntax, the word MISTAKE is inserted
between the line number and the body of the line. Upon execution, a line of this sort will
generate an error.

syntax: MRUN device
QMRUN device

example: i. MRUN flp1_chain_program
 ii. QMRUN flp2_new_data

NET network
NET originally allowed the network station number to be set. The NET device is not available in
QPC2. This keyword is provided for compatibility purposes only.

NEW
NEW will clear out the old program, variables and channels other than 0,1 and 2.

syntax: NEW

example: NEW

86 04/23

NEXT repetition
NEXT is used to terminate, or create a loop epilogue in, REPeat and FOR loops.

syntax: NEXT identifier

The identifier must match that of the loop which the NEXT is to control

example: i. 10 REMark this loop must repeat forever
 11 REPeat infinite_ loop
 12 PRINT "still looping"
 13 NEXT infinite_ loop

ii. 10 REMark this loop will repeat 20 times
 11 LET limit = 20
 12 FOR index=1 TO Limit
 13 PRINT index
 14 NEXT index

iii. 10 REMark this Loop will tell you when a 30 is found
 11 REPeat Loop
 12 LET number = RND(1 TO 100)
 13 IF number = 30 THEN NEXT Loop
 14 PRINT number; " is 30"
 15 EXIT LOOP
 16 END REPeat loop

in REPeat: If NEXT is used inside a REPeat - END REPeat construct it will force processing
to continue at the statement following the matching REPeat statement.

In FOR: The NEXT statement can be used to repeat the FOR loop with the control
variable set at its next value. If the FOR loop is exhausted then processing will
continue at the statement following the NEXT; otherwise processing will continue
at the statement after the FOR.

ON...GOTO
ON...GOSUB
To provide compatibility with other BASICs, SBASIC supports the ON GOTO and ON GOSUB
statements. These statements allow a variable to select from a list of possible line numbers a
line to process in a GOTO or GOSUB statement. If too few line numbers are specified in the list
then an error is generated.

syntax: ON variable GOTO expression *[, expression]*
 ON variable GOSUB expression *[, expression]*

example: i. ON x GOTO 10, 20, 30, 40
 ii. ON select_variable GOSUB 1000,2000,3000,4000

comment: SELect can be used to replace these two BASIC commands.

04/23 87

OPEN, OPEN_IN
OPEN_OVER, OPEN_DIR
OPEN_NEW devices, directory devices
OPEN allows the user to link a logical channel to a physical QPC2 device for I/O purposes.

OPEN_OVER will open a new directory device file overwriting the old file if it already exists.

OPEN_DIR will open the directory of a directory device.

If the channel is to a directory device then the directory device file can be an existing file or a
new file. In which case OPEN_IN will open an already existing directory device file for input and
OPEN_NEW will create a new directory device file for output.

syntax: channel:= # numeric_expression

 OPEN channel, device
OPEN_IN channel, device
OPEN_OVER channel, device
OPEN_DIR channel, device
OPEN_NEW channel, device

example: i. OPEN #5, f_name$
ii OPEN_IN #9,"flp1_filename"

{open file mdvl_file__name}
iii OPEN_NEW #7,win1_datafile

{open file mdvl_datafile}
 iv. OPEN #6,con_10x20a20x2032

{Open channel 6 to the console device creating a window size 10x20 pixels at
 position 20,20 with a 32 byte keyboard type ahead buffer.}

 v. OPEN #8,dev1_read_write_file.

comment: See also FOPEN, FOP_IN, FOP_OVER, FOP_DIR, and FOP_NEW for function
versions of the above commands.

OUTLN windows
OUTLN is used when writing SBASIC programs for the Pointer Interface, it signals that the
window is managed. Only managed windows with managed primaries may be used for pointer
input: SBASIC's primary window is usually #0.

The three optional parameters default to zero, but you can specify the move key, the shadow
widths or both if you wish. The shadow will appear to the right or bottom if xshad or yshad are
positive. The move key will discard the current window contents if it is zero, or move them to the
new position if it is set to 1 (you must keep the x and y sizes the same for this to work).

If you set the outline of a secondary window, then the area underneath it will be saved, and
restored when the outline is set again: this allows you to implement pull-down windows without
having to do the saves and restores yourself.

If OUTLN is used without parameters, then it will declare the smallest area which outlines all
windows currently opened for the job, to be the outline for that job, without changing the primary
window.

88 04/23

syntax: xsize:= numeric_expression
ysize:= numeric_expression
xorg:= numeric_expression
yorg:= numeric_expression
xshad:= numeric_expression
yshad:= numeric_expression
move:= numeric_expression

OUTLN [#channel,] xsize, ysize, xorg, yorg [, xshad, yshad] [, move]
OUTLN

example: i. OUTLN #4, 150,100,30,20,2,2 {set outline of #4 to a window 150 x 100, at 30,
 20 with a 2 pixel shading}

ii. OUTLN 512,256 {set outline of #0 to 512 x 256}

The following example will create a pop up window that will restore the background
when it has finished.

100 WMON
110 OUTLN {set the screen to be managed}
120 ch=FOPEN(‘con’) {opens a secondary window}
130 OUTLN#ch,100,100,200,10,4,4 {saves the background under the secondary}
140 CLS#ch
150 PRINT#ch,”Hello”
160 PAUSE#ch,-1
170 OUTLN#ch,0,0,200,10 {restores the background, note no size given}
180 CLOSE#ch

OVER windows
OVER selects the type of over printing required in the window attached to the specified or
default channel. The selected type remains in effect until the next use of OVER.

syntax: switch:= numeric_expression {range -1..1}

 OVER [channel,] switch

where switch = 0 - print ink on strip
 switch = 1 - print in ink on transparent strip
 switch = -1 - XORs the data on the screen

example: i. OVER 1 {set "overprinting")
 ii. 10 REMark Shadow Writing
 11 PAPER 7 : INK 0 : OVER 1 : CLS
 12 CSIZE 3,1
 13 FOR i = 0 TO 10
 14 CURSOR i,i
 15 IF i=10 THEN INK 2
 16 PRINT "Shadow"
 17 END FOR i

04/23 89

PALETTE_QL
PALETTE_8 graphics device 2
PALETTE_QL allows you to change the displayed colours of the standard QL compatible
colours 0 to 7.

PALETTE_8 allows you to change the displayed colours of the 256 colour (8 bit) mode.

On hardware that does not have a true palette map, palette map changes do not affect the
information already drawn on screen.

syntax: start:= numeric_expression
true_colour = numeric_expression {in the range 0 to 16,777,215}

PALETTE_QL start * , true_colour * {up to 8 true colours}
PALETTE_8 start * , true_colour * {up to 256 true colours}

example: i. 100 red = 255 * 65536
110 green = 255 * 256
120 blue = 255
130 magenta = 255 * 65536 + 255
140 yellow = 255 * 65536 + 255 * 256
150 cyan = 255 * 256 + 255
160 PALETTE_QL 0,0,yellow,cyan,green,magenta,red,blue

comment: There is a practical reason for changing the QL palette map entries. Many programs
define some of the colours displayed as "white-colour" on a 4 colour QL display,
white-red appears as green. White-red, however, is really cyan, not green. As a
result, many QL mode 4 programs take on rainbow hues when displayed on a 256,
65536 or full colour display.

This can be "fixed" by redefining the colours so that colour 2 is a bright crimson and
colour 4 is a bright sea green. This will ensure that colour 2 + colour 4 = colour 7.
We also need to ensure that colour 0 = colour 1, colour 2 = colour 3, etc.

600 crimson = 255 * 65536 + 100 : REMark crimson is red + a bit of blue
610 sea = 255 * 256 + 155 : REMark: sea green is green + the rest of blue
620 white = crimson + sea
630 PALETTE_QL 0, 0, 0, crimson, crimson, sea, sea, white, white

 : REMark set 8 colours

90 04/23

PAN windows
PAN the entire current window the specified number of pixels to the left or the right. PAPER is
scrolled in to fill the clear area.

An optional second parameter can be specified which will allow only part of the screen to be
panned.

syntax: distance:= numeric_expression
 part:= numeric_expression

 PAN [channel,] distance [, part]

where part = 0 - whole screen (or no parameter)
 part = 3 - whole of the cursor line
 part = 4 - right end of cursor line including the cursor position

If the expression evaluates to a positive value then the contents of the screen will be
shifted to the right.

example: i. PAN #2,50 {pan left 50 pixels}
 ii. PAN -100 {pan right 100 pixels}
 iii. PAN 50.3 {pan the whole of the current cursor line 50 pixels to the right}

warning: If stipples are being used or the screen is in low resolution mode then, to maintain
the stipple pattern, the screen must be panned in multiples of two pixels.

PAPER
WM_PAPER windows
PAPER sets a new paper colour (i.e. the colour which will be used by CLS, PAN, SCROLL,
etc). The selected paper colour remains in effect until the next use of PAPER. PAPER will also
set the STRIP colour

PAPER will change the paper colour in the window attached to the specified or default channel.

WM_PAPER will set the colour of the paper using one of the Windows Manager colour palettes.

syntax: PAPER [channel,] colour
WM_PAPER [channel,] wm_colour

example: i. PAPER #3,7 {White paper on channel 3}
 ii. PAPER 7,2 {White and red stipple}
 iii. PAPER 255 {Black and white stipple}
 iv. 10 REMark Show colours and stipples
 11 FOR colour = 0 TO 7
 12 FOR contrast = 0 TO 7
 13 FOR stipple = 0 TO 3
 14 PAPER colour, contrast, stipple
 15 SCROLL 6
 16 END FOR stipple
 17 END FOR contrast
 18 END FOR colour

04/23 91

PARNAM$ procedures
The function PARNAM$ when used in a procedure will return the name of the parameter
number.

syntax: parameter_number:= numeric_expression

PARNAM$ (parameter_number)

example: 10 pname fred, joe, 'mary'
....

70 DEF PROC pname (n1,n2,n3)
80 PRINT PARNAM$(1), PARNAM$(2), PARNAM$(3)
90 END DEF pname

would print 'fred joe ' (the expression has no name).

PARSTR$ procedures
The function PARSTR$ when used in a procedure will if parameter 'name' is a string, return the
value the string, else find the name of the parameter number.

syntax: parameter_number:= numeric_expression

PARSTR$ (name, parameter_number)

example: 10 pstring fred, joe, 'mary'
....

70 DEF PROC pstring (n1,n2,n3)
80 PRINT PARSTR$(n1,1), PARSTR$(n2,2), PARSTR$(n3,3)
90 END DEF pstring

would print 'fred joe mary'.

PARTYP
PARUSE procedures
The function PARTYP when used in a procedure will return the type of the named parameter.

The type returned is: 0 for null
1 for string
2 for floating point
3 for integer

The function PARUSE when used in a procedure will return the usage of the named parameter.

The usage returned is: 0 for unset
1 for variable
2 for array

syntax: PARTYP (name)
PARUSE (name)

92 04/23

PAR_BUFF devices
PAR_BUFF specifies the output buffer size. The output buffer should be at least 5 bytes to
avoid confusion with the port number. If the output buffer is specified as zero length, a dynamic
buffer is used.

syntax: port:= numeric_expression
output_buff:= numeric_expression

PAR_BUFF port, output_buff

example: i. PAR_BUFF 1,200 {200 byte output buffer on PAR1}
ii. PAR_BUFF 2,0 {dynamic output buffer on PAR2}

PAR_CLEAR
PAR_ABORT devices
PAR_CLEAR and PAR_ABORT clear the output buffers of any closed channels to the port.
Channels still open are not affected. PAR_ABORT also sends the "ABORTED" message to the
port.

syntax: port:= numeric_expression

PAR_CLEAR port
PAR_ABORT port

example: i. PAR_CLEAR 1 {clear output to PAR1}
ii. PAR_ABORT 3 {abort output to PAR3}

PAR_DEFAULTPRINTER$ devices
The function PAR_DEFAULTPRINTER$ will return a string containing the name of the
Microsoft Windows default printer.

syntax: PAR_DEFAULTPRINTER$

example: PRINT PAR_DEFAULTPRINTER$ {display the name of Windows default printer}

PAR_GETFILTER devices
The function PAR_GETFILTER will return a value of 1 if the filter is enabled for the specified
port, or the value of 0 if it is not.

syntax: port:= integer_numeric_expression

PAR_GETFILTER (port)

example: PRINT PAR_GETFILTER (1) {display if PAR1 has a filter}

04/23 93

PAR_GETPRINTER$ devices
The function PAR_GETPRINTER$ will return a string containing the name of the printer
connected to that PAR device.

The function will return “LPT1”, “LPT2”, or “LPT3” if it is not linked to a printer, but directly
connected to a parallel port.

syntax: port:= integer_numeric_expression

PAR_GETPRINTER$ (port)

example: i. PRINT PAR_GETPRINTER$ (2)
ii. printer_name$ = PAR_GETPRINTER$ (1)

PAR_PRINTERCOUNT devices
The function PAR_PRINTERCOUNT will return the number of printers installed on Microsoft
Windows.

syntax: PAR_PRINTERCOUNT

example: PRINT PAR_PRINTERCOUNT {display the number printers}

PAR_PRINTERNAME$ devices
The function PAR_PRINTERNAME$ will return as a string the name of the specified printer
number.

The printer number should be within the range of 1 to PAR_PRINTERCOUNT.

syntax: printer_number:= numeric_expression

PAR_PRINTERNAME$ (printer_number)

example: i. name$ = PAR_PRINTERNAME$ (1) {set name$ to first printer name}
ii. 10 FOR loop = 1 TO PAR_PRINTERCOUNT

20 PRINT PAR_PRINTERNAME$ (loop)
30 END FOR loop {display all available printers}

PAR_PULSE
Not used in QPC2. Sets the length of the strobe pulse of the parallel port.

PAR_SETFILTER devices
PAR_SETFILTER will enable, or disable the printer filter for the specified port.

If the printer should be enabled, although none is available, a “not found” error is returned.

syntax: port:= integer_numeric_expression

PAR_SETFILTER port, 0|1

example: i. PAR_SETFILTER 1, 0 {disable filter on PAR1}
ii. PAR_SETFILTER 2, 1 {enable filter on PAR2}

94 04/23

PAR_SETPRINTER devices
PAR_SETPRINTER will connect the PAR port either to a hardware port, such as “LPT1”, or to
the Windows printer spooler of the named printer.

syntax: port:= integer_numeric_expression
name:= string_expression

PAR_SETPRINTER port, name

example: i. PAR_SETPRINTER 1, “LPT1” {connect PAR1 to “LPT1”}
ii. PAR_SETPRINTER 2, PAR_DEFAULTPRINTER$

{connect PAR2 to the default Windows printer}

PAR_USE redirection
The PAR_USE command allows the parallel port to be used with software that only allows
output to SER1 or SER2.

syntax: PAR_USE string_expression

example: 10 PAR_USE "ser"
20 COPY_N "flp1_myfile" TO "ser2" {will send the file to PAR}
30 COPY_N "flp1_ myfile" TO "ser1f" { will print the file to PAR ending with

 a form feed}

PAR_WAIT
Not used in QPC2.

PAUSE
PAUSE will cause a program to wait a specified period of time. Delays are specified in units of
20ms in the UK only, otherwise 16.67ms. If no delay is specified, or the delay is -1, then the
program will pause indefinitely. Keyboard input will terminate the PAUSE and restart program
execution.

syntax: delay:= numeric_expression

 PAUSE [delay]

example: i. PAUSE 50 {wait 1 second}
 ii. PAUSE 500 {wait 10 seconds}

PE_BGON, PE_BGOFF extended environment
PE_BGON allows printing to continue to partially covered windows.

PE_BGOFF blocks printing to partially covered windows.

By default, background printing is turned off. So use the PE_BGON command in your boot file if
you want to keep it on.

syntax: PE_BGOFF {turn off background window drawing}
PE_BGON {turn on background window drawing}

04/23 95

PEEK, PEEK_W
PEEK_L, PEEK_F SBASIC
PEEK is a function which returns the contents of the specified memory location. PEEK has four
forms which will access a byte (8 bits), a word (16 bits), a long word (32 bits), or a six byte
floating point number.

PEEK may be referenced from the system variables if the first parameter of PEEK is preceded
by an exclamation mark, then the address of the peek is in the system variables or referenced
via the system variables. There are two variations: direct and indirect references.

For direct references, the exclamation mark is followed by another exclamation mark and an
offset within the system variables.

For indirect references, the exclamation mark is followed by the offset of a pointer within the
system variables, another exclamation mark and an offset from that pointer.

PEEK may also be referenced from the SBASIC variables if the first parameter of PEEK is
preceded by a backslash, then the address of the peek is in the SBASIC variables or referenced
via the SBASIC variables. There are two variations: direct and indirect references.

For direct references, the backslash is followed by another backslash and an offset within the
SBASIC variables.

For indirect references, the backslash is followed by the offset of a pointer within the SBASIC
variables, another backslash and an offset from that pointer.

syntax: address:= numeric_expression
 | !! numeric_expression
 | ! numeric_expression ! numeric_expression
 | \\ numeric_expression
 | \ numeric_expressionI \ numeric_expression

 PEEK(address) {byte access}
 PEEK_W(address) {word access}
 PEEK_L(address) {long word access}

PEEK_F(address) {floating point access}

example: i. PRINT PEEK(12245) {byte contents of location 12245}
 ii. PRINT PEEK_W(12) {word contents of locations 12 and 13}
 iii. PRINT PEEK_L(1000) {long word contents of location 1000}

iv. PRINT PEEK_L(12200) {floating point number contents of location 12200}
v. ramt = PEEK_L (! !$20) {find the top of RAM $20 bytes on from the base of

 the system variables}
vi. job1 = PEEK_L (!$68!4) {find the base address of Job 1 (4 bytes on from base

 of Job table)}
vii. dal = PEEK_W (\\$94) {find the current data line number
viii.n6 = PEEK_W (\$18\2+6*8) {find the name pointer for the 6th name in the

 name table}
ix. nl6 = PEEK (\$20\n6) {...and the length of the name}
x. n6$ = PEEK$ (\$20\n6+1, nl6) {...and the name itself}

comment: PEEK_W will return negative numbers for values above 32768

warning: For word and long word access the specified address must be an even address.

96 04/23

PEEKS, PEEKS_W
PEEKS_L, PEEKS_F SBASIC
Supervisor mode equivalents of PEEK for access to I/O hardware in Atari ST & Q40 systems.

PEEK$ SBASIC
PEEK$ will return a string with the number of supplied bytes starting from the supplied address.
The bytes need not, of course, be text.

syntax: start_address:= numeric_expression
number_of_bytes:= numeric_expression

PEEK$ (start_address, number_of_bytes)

example: PRINT PEEK$(123456,20) {will display the 20 bytes from address 123456}

PEEKS$ SBASIC
Supervisor mode equivalent of PEEK$ for access to I/O hardware in Atari ST & Q40 systems.

PEEK_AY programmable sound generator
PEEK_AY is a function to return the value that is set in one of the registers of the two AY-3
chips. If no chip parameter is supplied, then chip 0 will be the default one used.

syntax: ay_chip: = numeric_expression {0 or 1}
reg_no:= numeric_expression {0 to 13}

PEEK_AY([ay_chip,] reg_no)

example: i. PRINT PEEK_AY(6) {display noise period register of chip 0}
ii. PRINT PEEK_AY(1, 6) {display noise period register of chip 1}

note: For more information on the AY-3 sound system, see the QPC Concepts document.

PENUP
PENDOWN turtle graphics
Operates the 'pen' in turtle graphics. If the pen is up then nothing will be drawn. If the pen is
down then lines will be drawn as the turtle moves across the screen.

The line will be drawn in the window attached to the specified or default channel. The line will be
drawn in the current ink colour for the channel to which the output is directed.

syntax: PENUP [channel]
 PENDOWN [channel]

example: i. PENUP {will raise the pen in the default channel}
 ii. PENDOWN #2 {will lower the pen in the window attached to channel 2}

PI maths function
PI is a function which returns the value of .

syntax: PI

example: PRINT PI
04/23 97

PLAY programmable sound generator
PLAY sends a string of musical instructions into the interrupt driven list of the supplied sound
channel. The string may contain various characters (case is not distinctive) to denote the
required action, or note to be played.

Construction of the sound string

Function Values
Notes C D E F G A H (H corresponds to B, HB to B flat)
Sharps #
Flats b
Rests p (one length unit)
Change in octave o0 o1 .. o7 (default o2)
Change in volume v0 v1 .. v15 V16 switches to envelope control
Duration of note in 1/50 sec 10 .. 1255 (default: 15)
Change of noise frequency n0 n1 .. 31 (default n0)
Determine warp curve w0 w1 .. w15 (default w0)
Change length of warp x0 x1 .. x32767 (default is x0)
Synchronisation stop s causes a sound channel to wait
Activate a waiting channel r1 r2 .. r6

After setting a sound string with PLAY, you need to RELEASE the sound channel to start it
playing. You may also need a set a short PAUSE before the RELEASE.

syntax: ay_channel:= numeric_expression {1 to 6}
sound:= string_expression

PLAY ay_channel, sound

example: PLAY 1, 'pv15o4sCDEFGAHo5CDEFGAHp'

comment: The above example breaks down as
p one rest
v15 maximum volume
o4 set octave
s end of synchronisation
CDEFGAH play a scale
o5 set a new octave
CDEFGAH play the scale at the next octave
p one rest

note: For more information on the AY-3 sound system, see the QPC Concepts document.

PLAYING programmable sound generator
PLAYING is a function which will return 1 (true) if the supplied channel is currently playing and
0 (false) if it is not currently playing.

syntax: ay_channel:= numeric_expression {1 to 6}

PLAYING (ay_channel)

example: PRINT PLAYING(2) {display 1 if channel 2 is currently playing}

note: Currently PLAYING stops with an error 'invalid channel ID' if you try to test a channel
that is currently not in use.

For more information on the AY-3 sound system, see the QPC Concepts document.

98 04/23

POINT
POINT_R graphics
POINT plots a point at the specified position in the window attached to the specified or default
channel. The point is plotted using the graphics coordinates system relative to the graphics
origin. If POINT_R is used then all points are specified relative to the
graphics cursor and are plotted relative to each other.

Multiple points can be plotted with a single call to POINT.

syntax: x:= numeric_expression
 y:= numeric_expression

parameters:= x,y

 POINT [channel,] parameters* [,parameters]*

example: i. POINT 256,128 {plot a point at (256,128)}
 ii. POINT x,x*x {plot a point at (x,x*x)}
 iii. 10 REPeat example
 20 INK RND(255)
 30 POINT RND(100),RND(100)
 40 END REPeat example

POKE, POKE_W
POKE_L, POKE_F SBASIC
POKE allows a memory location to be changed. For word and long word accesses the specified
address must be an even address.

POKE has four forms which will access a byte (8 bits), a word (16 bits), a long word (32 bits), or
a six byte floating point number.

POKE may be referenced form the system variables if the first parameter of POKE is preceded
by an exclamation mark, then the address of the poke is in the system variables or referenced
via the system variables. There are two variations: direct and indirect references.

For direct references, the exclamation mark is followed by another exclamation mark and an
offset within the system variables.

For indirect references, the exclamation mark is followed by the offset of a pointer within the
system variables, another exclamation mark and an offset from that pointer.

POKE may also be referenced from the SBASIC variables if the first parameter of POKE is
preceded by a backslash, then the address of the poke is in the SBASIC variables or referenced
via the SBASIC variables. There are two variations: direct and indirect references.

For direct references, the backslash is followed by another backslash and an offset within the
SBASIC variables.

For indirect references, the backslash is followed by the offset of a pointer within the SBASIC
variables, another backslash and an offset from that pointer.

POKE allows more than one value to be POKEd at a time. For POKE_W and POKE_L, the
address may be followed by a number of values to poke in succession. For POKE the address
may be followed by a number of values to poke in succession and the list of values may include
strings. If a string is given, all the bytes in the string are POKEd in order. The length is not
POKEd.

04/23 99

syntax: address:= numeric_expression
 | !! numeric_expression
 | ! numeric_expression ! numeric_expression
 | \\ numeric_expression
 | \ numeric_expressionI \ numeric_expression

 data:= numeric_expression

 POKE address, data [* ,data | string *] {byte access}
 POKE_W address, data [* ,data *] {word access}
 POKE_L address, data [* ,data *] {long word access}

POKE_F address, data [* ,data *] {floating point access}

example: i. POKE 12235,0 {set byte at 12235 to 0}
 ii. POKE_L 131072,12345 {set long word at 131072 to 12345}

iii. POKE_F 131072,12345 {set six bytes at 131072 to the floating point version
 of 12345}

iv. POKE_W ! !$8E,3 {set the auto-repeat speed to 3}
v. POKE !$B0!2, 'WIN' {change the first three characters of DATA_USE to

 WIN}

warning: Poking data into areas of memory used by SMSQ/E can cause the system to crash
and data to be lost. Poking into such areas is not recommended.

POKES, POKES_W
POKES_L, POKES_F SBASIC
Supervisor mode equivalents of POKE for access to I/O hardware in Atari ST & Q40 systems.

POKE$ SBASIC
POKE$ will pokes the supplied string of bytes into memory, starting from the supplied address.

syntax: start_address:= numeric_expression

POKE$ start_address, string

example: POKE$ 131072,"hello" {will put the string "hello" into address 131072}

comment: PEEK$ and POKE$ can accept all the extended addressing facilities of PEEK and
POKE. Indeed, POKE$ is identical to POKE which can now accept string
parameters.

POKES$ SBASIC
Supervisor mode equivalent of POKE$ for access to I/O hardware in Atari ST & Q40 systems.

100 04/23

POKE_AY programmable sound generator
POKE_AY allows setting of any of the AY-3 registers. If no chip parameter is supplied, then chip
0 will be the default one used.

syntax: ay_chip:= numeric_expression {0 or 1}
reg_no:= numeric_expression {0 to 13}
value:= numeric_expression {0 to 255}

POKE_AY [ay_chip,] reg_no, value

example: i. POKE_AY 2,100 {set register 2, in chip 0, to 100}
ii. POKE_AY 1,8,15 {set register 8, in chip 1, to 15}

note: For more information on the AY-3 sound system, see the QPC Concepts document.

PRINT devices, directory devices
Allows output to be sent to the specified or default channel. The normal use of PRINT is to send
data to the QPC2 screen.

syntax: separator:= | !
 | ,
 | \
 | ;
 | TO numeric_expression

 item:= | expression
 | channel
 | separator

 PRINT *[item]*

Multiple print separators are allowed. At least one separator must separate channel
specifications and expressions.

example: i. PRINT "Hello World"
{will output Hello World on the default output device (channel 1)}

 ii. PRINT #5,"data",1,2,3,4
{will output the supplied data to channel 5 (which must have been previously
 opened)}

 iii. PRINT TO 20; "This is in column 20"

! Normal action is to insert a space between items output on the screen. If the item will
not fit on the current line a line feed will be generated. If the current print position is
at the start of a line then a space will not be output. ! affects the next item to be
printed and therefore must be placed in front of the print item being printed. Also a ;
or a ! must be placed at the end of a print list if the spacing is to be continued over a
series of PRINT statements.

, Normal separator, SBASIC will tabulate output every 8 columns.

\ Will force a new line.

; Will leave the print position immediately after the last item to be printed. Output will
be printed in one continuous stream.

TO Will perform a tabbing operation. TO followed by a numeric_expression will advance
the print position to the column specified by the numeric_expression. If the
requested column is meaningless or the current print position is beyond the specified
position then no action will be taken.

04/23 101

PRINT_USING devices, directory devices
PRINT_USING is a fixed format version of the PRINT command:

The 'format' is a string or string expression containing a template or 'image' of the required
output. Within the format string the characters + - # *, . ! \ ' " $ and @ all have special meaning.
When called, the procedure scans the format string, writing out the characters of the string, until
a special character is found.

If the @ character is found, then the next character is written out, even if it is a special
character.

If the character is a " or ' , then all the following characters are written out until the next " or ' .

If the \ character is found, then a newline is written out.

All the other special characters appear in format 'fields'. For each field an item is taken from the
list, and formatted according to the form of the field and written out.

The field determines not only the format of the item, but also the width of the item (equal to the
width of the field). The field widths in the examples below are arbitrary.

field format

if item is string, write string left justified or truncated otherwise
write integer right justified

***** write integer right justified empty part of field filled with *
(e.g. ***12)

####.## fixed point decimal (e.g. 12.67)

****.** fixed point decimal, * filled (e.g. **12.67)

##,###.## fixed point decimal, thousands separated
,*.** by commas (e.g 1,234.56 or *1,234.56)

-#.####!!!! exponent form (e.g. 2.9979E+08) optional sign
+#.####!!!! exponent form always includes sign

###.>> fixed point decimal, scaled (i.e. if you calculate in pennies)

The exponent field must start with a sign, one #, and a decimal point (comma or full stop). It
must end with four !s.

Any decimal field may be prefixed or postfixed with a + or -, or enclosed in parentheses. If a
field is enclosed in parentheses, then negative values will be written out enclosed in
parentheses. If a – is used then the sign is only written out if the value is negative; if a + is used,
then the sign is always written out. If the sign is at the end of the field, then the sign will follow
the value.

Numbers can be written out with either a comma or a full stop as the decimal point. If the field
includes only one comma or full stop, then that is the character used as the decimal point. If
there is more than one in the field, the last decimal point found (comma or full stop) will be used
as the decimal point, the other is used as the thousands separator.

If the decimal point comes at the end of the field, then it will not be printed. This allows
currencies to be printed with the thousands separated, but with no decimal point (e.g 1,234).

Floating currency symbols are inserted into fields using the $ character. The currency symbols
are inserted between the $ and the first # in the field (e.g. $Dm#.###,## or +$$##,###.##).
When the value is converted, the currency symbols are 'floated' to the right to meet the value.

102 04/23

syntax: PRINT_USING #channel, format, * items *

example: 10 fmt$='@$ Charges *******.** : ($$Kr##.###,##) : ##,###.##+\'
20 PRINT_USING fmt$, 123.45, 123.45, 123.45
30 PRINT_USING fmt$, -12345.67, -12345.67, -12345.67
40 PRINT_USING '-#.###!!!!\', 1234567

will print

$ Charges ****123.45 : SKr123,45 : 123.45+
$ Charges *-12345.67 : (SKr12.345,67) : 12,345.67-1.235E+06

PROCESSOR SMSQ/E
PROCESSOR will return the Motorola MC680x0 family type.

syntax: PROCESSOR

example: PRINT PROCESSOR

comment: PROCESSOR will return 10 for QPC2.

PROG_USE program default
The PROG_USE default is used only for finding the program
files for the EX/EXEC commands,

PROG_USE is used to set a default, which is used only for finding the program files for the
EX/EXEC commands, If you do not supply a complete SMSQ/E filename in the command, the
PROG_USE default will be added to the beginning of the supplied filename.

If the supplied filename is not found in the system, Then the PROG_USE default will be added
to the beginning of the supplied filename, and another attempt will be made to execute the
command.

syntax: directory_name:= device*[subdirectory_]*

PROG_USE directory_name

example: 100 PROG_USE win1_programs_
110 EXEC editor {Starts the executable program “win1_programs_editor}

comment: If the directory name supplied does not end with '_', '_' will be appended to the
directory name.

04/23 103

PROT_DATE clock
PROT_DATE is used to protect or unprotect the real time clock. If the real time clock is
protected, setting the date affects only SMSQ's own clock, the real time will be restored the next
time the computer is reset.

Where the system has a separate battery backed real time clock. The date is read from the
clock when the system is reset. Thereafter, the clock is kept up to date by the SMSQ timer.

In general, the system real time clock is updated whenever you adjust or set the date. As some
QL software writers could not resist the temptation of setting the date to their birthday (or other
inconvenient date) this can play havoc with your file date stamps etc.

syntax: PROT_DATE numeric_expression {0 or 1}

example: i. PROT_DATE 0 {date is not protected}
ii. PROT_DATE 1 {date is protected}

PROT_MEM
Sets the memory protection level in Atari ST & Q40 systems.

PRT_BUFF devices
PRT_BUFF specifies the output buffer size. The output buffer should be at least 5 bytes to
avoid confusion with the port number. If the output buffer is specified as zero length, a dynamic
buffer is used.

syntax: port:= numeric_expression
output_buff:= numeric_expression

PRT_BUFF port, output_buff

example: i. PRT_BUFF 1,200 {200 byte output buffer on PRT1}
ii. PRT_BUFF 2,0 {dynamic output buffer on PRT2}

PRT_CLEAR
PRT_ABORT devices
PRT_CLEAR and PRT_ABORT clear the output buffers of any closed channels to the port.
Channels still open are not affected. PRT_ABORT also sends the "ABORTED" message to the
port.

syntax: port:= numeric_expression

PRT_CLEAR port
PRT_ABORT port

example: i. PRT_CLEAR 1 {clear output to PRT1}
ii. PRT_ABORT 3 {abort output to PRT3}

104 04/23

PRT_USE devices
PRT_USE originally specified a name for the dynamic print buffer. However as all output ports
now incorporate dynamic buffering, an "add-on" printer buffer is not required.

The SMSQ/E version of PRT_USE is identical to that of the Atari ST drivers for QDOS. It merely
specifies which port will be opened if you open the device PRT.

syntax: PRT_USE [name]

example: i. PRT_USE PAR : COPY fred to PRT {copy fred to PAR}
ii. PRT_USE SER4XA : OPEN #5,PRT {open a channel to SER4 with

 XON/XOFF and <CR><LF>}

PRT_USE$ devices
The PRT_USE$ function will return as a string the name of the device associated to the PRT
device by the PRT_USE command.

syntax: PRT_USE$

example: PRINT PRT_USE$

QPC_CMDLINE$ QPC
QPC_CMDLINE$ will return as a string, the text after the ‘–cmdline’ argument that was supplied
on the command line that was used to start QPC2.

syntax: QPC_CMDLINE$

example: command$ = QPC_CMDLINE$

comment: QPC_CMDLINE$ could be used to pass a file name to QPC2 so that it will
automatically load and run the desired file.

QPC_EXEC QPC
QPC_EXEC will call an external DOS or Windows program. The name of the executable file is
given in the first parameter. Optionally you can also supply the command line arguments with
the second parameter.

Furthermore you can supply a data file as first parameter, in this case the default Windows
viewer for this type of file is executed.

syntax: program:= string_expression
parameters:= string_expression

QPC_EXEC program [, parameter]

example: i. QPC_EXEC ’notepad’,’c:\text.txt’ {Start notepad and load the c:\text file}
ii. QPC_EXEC ’c:\text.txt’ {Start the default viewer for .TXT files}

QPC_EXIT QPC
QPC_EXIT will quit QPC2 and returns to Windows.

syntax: QPC_EXIT

04/23 105

QPC_FLASHBUTTON QPC
QPC_FLASHBUTTON will flash the taskbar button until the user brings QPC2 to the
foreground. It has no effect if QPC2 is already the foreground application.

syntax: QPC_FLASHBUTTON

QPC_HASFOCUS QPC
QPC_HASFOCUS will return the value 1 if QPC2 currently has the PC's keyboard focus, or 0 if
it does not.

syntax: QPC_HASFOCUS

example: PRINT QPC_HASFOCUS

QPC_HOSTOS QPC
QPC_HOSTOS will return the host operating system under which QPC2 was started. Possible
return codes are:

0 = DOS (QPC1)
1 = Windows 9x/ME
2 = Windows NT/2000
3 = Wine on Linux or unknown OS
4 = Wine on Darwin (MacOS)
5 = Windows XP
6 = Windows Vista
7 = Windows 7
8 = Windows 8

 10 = Windows 10

syntax: QPC_HOSTOS

example: system% = QPC_HOSTOS

QPC_MAXIMIZE
QPC_MINIMIZE
QPC_RESTORE QPC
QPC_MAXIMIZE, QPC_MINIMIZE, and QPC_RESTORE will maximise, minimises or restore
the QPC2 window.

syntax: QPC_MAXIMIZE
QPC_MINIMIZE
QPC_RESTORE

QPC_MSPEED QPC
This command is supplied for compatibility reasons. It is used on QPC1 to change the mouse
acceleration. It has no effect on QPC2.

QPC_NETNAME$ QPC
QPC_NETNAME$ will return the current network name of your PC (the one you supplied upon
installation of Windows). This command can be used to distinguish between different PCs (e.g.
in the BOOT program).

106 04/23

QPC_QLSCREMU QPC
QPC_QLSCREMU will enable or disable the original QL screen emulation. When emulating the
original screen, all memory write accesses to the area $20000-$27FFF are intercepted and
translated into writes to the first 512x256 pixels of the big screen area. If the screen is in high
colour mode, additional colour conversion is done.

Possible values are:

 -1: automatic mode
0: disabled (default)
4: force to 4 colour mode
8: force to 8 colour mode

When in QL colour mode the emulation just transfers the written bytes to the larger screen
memory, i.e. when the big mode is in 4 colour mode, the original screen area is also treated as
4 colour mode. In high colour mode however the colour conversion can do both modes. In this
case you can pre-select the emulated mode (4, 8 as parameter) or let the last issued MODE call
decide (automatic mode). Please note that that the automatic mode does not work on a per-job
basis, so any job which issues a MODE command changes the behaviour globally.

Please also note that this transition is one-way only, i.e. bytes written legally to the first 512x256
pixels are not transferred back to the original QL screen (in case of a high colours screen this
would hardly be possible anyway). Unfortunately this also means that not all old programs run
perfectly with this type of emulation. If you experience problems, start the misbehaving
application in 512x256 mode.

syntax: value:= numeric_expression

QPC_QLSCREMU value

example: QPC_QLSCREMU 4 {force 4 colour mode}

QPC_SYNCSCRAP QPC
In order to quickly exchange text passages between Windows and SMSQ the syncscrap
functionality was introduced. The equivalent of the Windows clipboard is the scrap extension of
the menu extensions. After loading the menu extensions you can call this command which
creates a job that periodically checks for changes in either the scrap or the Windows clipboard
and synchronises their contents if necessary. Please note that only text contents is supported.
The character conversion between the QL character set and the Windows ANSI set is done
automatically. The line terminators (LF/CR, LF alone) are converted, too.

syntax: QPC_SYNCSCRAP

QPC_VER$ QPC
QPC_VER$ will return the current QPC2 version.

syntax: QPC_VER$

example: v$ = QPC_VER$

comment: QPC_VER$ will return 3.00 or higher.

04/23 107

QPC_WINDOWSIZE QPC
QPC_WINDOWSIZE sets the size of the client area (the part that displays SMSQ/E) of the
QPC2 window. It does NOT alter the resolution SMSQ/E runs with, so the pixels are effectively
zoomed.

It is equivalent to the “window size” option in the main configuration window. If QPC2 is currently
in full screen mode it will switch to windowed mode.

Window size cannot be set smaller than the SMSQ/E resolution or bigger than the desktop
resolution.

syntax: x:= numeric_expression
y:= numeric_expression

QPC_WINDOWSIZE x, y

example: DISP_SIZE 512,256
QPC_WINDOWSIZE 1024,512 {do a 200% zoom of the QPC window}

QPC_WINDOWTITLE QPC
QPC_WINDOWTITLE amends the Microsoft Windows title line which you can see when QPC2
runs in a windowed mode.

This can be used to distinguish between several QPC2 instances.

syntax: title:= string_expression

QPC_WINDOWTITLE title

example: QPC_WINDOWTITLE “Accounting” {sets the title to “Accounting – QPC…}

QUIT SBASIC
QUIT will end any SBASIC daughter jobs whether it has been created by the SBASIC
command, EX or any other means.

An optional negative error code may returned to the calling program, when the SBASIC program
has been started via EW.

syntax: error_code:= negative_numeric_expression

QUIT [error_code]

example: QUIT – 4 {return a ‘value out of range’ error to calling program}

comment: QUIT will not end the primary SBASIC job (job 0). To quit from this job, use
QPC_EXIT.

RAD maths functions
RAD is a function which will convert an angle specified in degrees to an angle specified in
radians.

syntax: RAD (numeric_expression)

example: PRINT RAD(180) {will print 3.141593}

108 04/23

RAM_USE directory devices
RAM_USE allows renaming of the RAM device. RAM_USE without a parameter will reset the
name of RAM back to RAM.

syntax: RAM_USE [name]

example: i. RAM _USE flp : LOAD flp2_prog {loads 'prog' from RAM2_ }
ii. RAM _USE {and now its name is RAM again}
iii. RAM_USE win : DIR win1_ {displays directory of RAM1_}

RANDOMISE maths functions
RANDOMISE allows the random number generator to be reseeded. If a parameter is specified
the parameter is taken to be the new seed. If no parameter is specified then the generator is
reseeded from internal information.

syntax: RANDOMISE [numeric_expression]

example: i. RANDOMISE {set seed to internal data}
 ii. RANDOMISE 3.2235 {set seed to 3.2235}

RECOL windows
RECOL will recolour individual pixels in the window attached to the specified or default channel
according to some pre-set pattern. Each parameter is assumed to specify, in order, the colour in
which each pixel is recoloured, i.e. the first parameter specifies the colour
with which to recolour all black pixels, the second parameter blue pixels, etc.

The colour specification must be a solid colour, i.e. it must be in the range 0 to 7.

RECOL only works as specified in 512 x 256 QL colour mode. Using it in other screen modes
gives unpredictable effects.

syntax: c0:= new colour for black
 c1:= new colour for blue
 c2:= new colour for red
 c3:= new colour for magenta
 c4:= new colour for green
 c5:= new colour for cyan
 c6:= new colour for yellow
 c7:= new colour for white

 RECOL [channel ,] c0, c1, c2, c3, c4, c5, c6, c7

example: RECOL 2,3,4,5,6,7,1,0 {recolour blue to magenta, red to green, magenta to
 cyan etc.}

04/23 109

RELEASE programmable sound generator
RELEASE causes all, or the specified interrupt sound lists to be played, or resumed if held. If no
parameter is supplied, then all sound lists will be played, or resumed.

After setting a sound string with PLAY, you may need a set a short PAUSE before releasing the
sound channel.

syntax: ay_channel:= numeric_expression {1 to 6}

RELEASE [ay_channel]

example: i. RELEASE {release all channels}
ii. RELEASE 1 {release channel 1 only}

note: Currently RELEASE stops with an error 'invalid channel ID' if you try to test a
channel that is currently not in use.

For more information on the AY-3 sound system, see the QPC Concepts document.

warning: This command is currently broken. It does not fail on channel numbers above 6.
Using channel numbers above 6, may cause undesired effects or crash the driver.
See the QPC Concepts document for a patch program.

REMark
REMark allows explanatory text to be inserted into a program. The remainder of the line is
ignored by SBASIC.

syntax: REMark text

example: REMark This is a comment in a program

comment: REMark is used to add comments to a program to aid clarity.

RENAME
WREN directory devices
RENAME and WREN (wild card renaming) is a process similar to COPYing a file, but the file
itself is neither moved nor duplicated, only the directory name is changed. The commands,
however, are exactly the same in use as the equivalent COPY commands.

syntax: RENAME name TO name
WREN [#channel,] name TO name

110 04/23

RENUM
RENUM allows a group or a series of groups of SBASIC line numbers to be changed. If no
parameters are specified then RENUM will renumber the entire program. The new listing will
begin at line 100 and proceed in steps of 10.

If a start line is specified then line numbers prior to the start line will be unchanged. If an end
line is specified then line numbers following the end line will be unchanged.

If a start number and stop are specified then the lines to be renumbered will be numbered from
the start number and proceed in steps of the specified size.

If a GOTO or GOSUB statement contains an expression starting with a number then this
number is treated as a line number and is renumbered.

syntax: startline:= numeric_expression {start renumber}
 end_line:= numeric_expression {stop renumber}
 start_number:= numeric_expression {base line number}
 step:= numeric_expression {step}

 RENUM [start_line [TO end_line];] [startnumber] [,step]

example: i. RENUM {renumber whole program from 100 by 10}
 ii. RENUM 100 TO 200 {renumber from 100 to 200 by 10}

warning: No attempt must be made to use RENUM to renumber program lines out of
sequence, i.e. to move lines about the program. RENUM should not be used in a
program.

REPeat
END REPeat repetition
REPeat allows general repeat loops to be constructed. REPeat should be used with EXIT for
maximum effect. REPeat can be used in both long and short forms:

short: The REPeat keyword and loop identifer are followed on the same logical line by a
colon and a sequence of SBASIC statements. EXIT will resume normal processing
at the next logical line.

syntax: REPeat identifier : statements

example: REPeat wait : IF INKEY$ = "" THEN EXIT wait

long: The REPeat keyword and the loop identifier are the only statements on the logical
line. Subsequent lines contain a series of SBASIC statements terminated by an END
REPeat statement.

The statements between the REPeat and the END REPeat are repeatedly
processed by SBASIC.

syntax: REPeat identifier
 statements
 END REPeat identifier

04/23 111

example: 10 LET number = RND(1 TO 50)
11 REPeat guess

 12 INPUT "What is your guess?", guess
 13 IF guess = number THEN
 14 PRINT "You have guessed correctly"
 15 EXIT guess
 16 ELSE
 17 PRINT "You have guessed incorrectly"
 18 END IF
 19 END REPeat guess

comment: Normally at least one statement in a REPeat loop will be an EXIT statement.

REPORT error handling
REPORT will report the description of the last error encountered to the specified of default
channel. An optional negative error number may be supplied. if so, the error message for this
number will be reported.

syntax: error_number:= -numeric_expression
REPORT [#channel,] [error_ number]

example: REPORT –1 {display a Not Complete error message}

comment: The default channel is #0

RESET
RESET will reset the computer. Using this command could result in loss of data (e.g. when you
RESET while sectors are being written to your floppy disk or hard disk), therefore much care
should be taken if this command is used without the control of the user.

syntax: RESET

RESPR memory management
RESPR is a function which will reserve some of the resident procedure space. (For example to
expand the SBASIC procedure list.)

If resident procedure space is not available, then space will be reserved in the common heap.

syntax: space:= numeric_expression
 RESPR (space)

example: PRINT RESPR(1024) {will print the base address of a 1024 byte block}

112 04/23

RETurn functions and procedures
RETurn is used to force a function or procedure to terminate and resume processing at the
statement after the procedure or function call. When used within a function definition the
RETurn statement is used to return the function's value.

syntax: RETern [expression]

example: i. 100 PRINT ack (3,3)
 110 DEFine FuNction ack(m,n)
 120 IF m=0 THEN RETurn n+l
 130 IF n=0 THEN RETurn ack (m-l,l)
 140 RETern a c k (m-l ,a c k (m, n-l))
 150 END DEFine

ii. 10 LET warning_flag =1
 11 LET error_number = RND(0 TO 10)
 12 warning error_number
 13 DEFine PROCedure warning(n)
 14 IF warning_flag THEN
 15 PRINT "WARNING:";
 16 SELect ON n
 17 ON n =1
 18 PRINT "Microdrive full"
 19 ON n = 2
 20 PRINT "Data space full"
 21 ON n = REMAINDER
 22 PRINT "Program error"
 23 END SELect
 24 ELSE
 25 RETurn
 26 END IF
 27 END DEFine

comment: It is not compulsory to have a RETurn in a procedure. If processing reaches the
END DEFine of a procedure then the procedure will return automatically.

RETurn by itself is used to return from a GOSUB.

RJOB job control
RJOB is a command to remove a job from SMSQ/E.

syntax: job_identifier:= | job_number , tag_number
| job_number + (tag_number * 65536)

id:= job_identifier

RJOB id | name , error_code

example: i. RJOB 3,8,-1 {remove Job 3, tag 8 with error –1}
ii. RJOB 524291,-1 {Same as above}

comment: If a name is given rather than a Job ID, then the procedure will search for the first
Job it can find with the given name.

04/23 113

RND maths function
RND generates a random number. Up to two parameters may be specified for RND. If no
parameters are specified then RND returns a pseudo random floating point number in the
exclusive range 0 to 1. If a single parameter is specified then RND returns an integer in the
inclusive range 0 to the specified parameter. If two parameters are specified then RND returns
an integer in the inclusive range specified by the two parameters.

syntax: RND([numeric_expression] [TO numeric_expression])

example: i. PRINT RND {floating point number between 0 and 1}
 ii. PRINT RND(10 TO 20) {integer between 10 and 20}
 iii. PRINT RND(1 TO 6) {integer between 1 and 6}
 iv. PRINT RND(10) {integer between 0 and 10}

RUN program
RUN allows an SBASIC program to be started. If a line number is specified in the RUN
command then the program will be started at that point, otherwise the program will start at the
lowest line number.

syntax: RUN [numeric_expression]

example: i. RUN {run from start}
 ii. RUN 10 {run from line 10}
 iii. RUN 2*20 {run from line 40}

comment: Although RUN can be used within a program its normal use is to start program
execution by typing it in as a direct command.

SAVE, QSAVE
SAVE_O, QSAVE_O devices, directory devices
SAVE will save a SBASIC program onto any QPC2 device.

QSAVE will save an SBASIC program, overwriting it if it already exists.

QSAVE and QSAVE_O will save an SBASIC program in the quick load format with a _SAV at
the end of the filename.

when saving to a non directory device, The device name may be replaced with a channel
number.

syntax: line:= | numeric_expression TO numeric_expression (1)
 | numeric_expression TO (2)
 | TO numeric_expression (3)
 | numeric_expression (4)
 | (5)

 SAVE device *[,line]*
QSAVE device *[,line]*
SAVE_O device *[,line]*
QSAVE_O device *[,line]*

where (1) will save from the specified line to the specified line
 (2) will save from the specified line to the end
 (3) will save from the start to the specified line
 (4) will save the specified line
 (5) will save the whole program

114 04/23

example: i. SAVE win1_program,20 TO 70
{save lines 20 to 70 on win1_program}

ii. QSAVE flp2_test_program,10,20,40
{quick save lines 10,20,40 on flp1_test_program}

iii. SAVE_O dev1_program
{save the entire program to dev1_program, overwriting if it exists}

iv. SAVE ser1
{save the entire program on serial channel }

v. OPEN_NEW#4,pipe_alpha_1000
SAVE#4

{save the entire program to a channel }

SBASIC
SBASIC will create a daughter SBASIC job.

Having a number of SBASIC jobs which completely cover each other may not be very useful.
SBASIC daughter jobs may, therefore, either be created either with the full set of standard
windows (in which case they all overlap) or they may be created with only one small window
(#0).

The SBASIC command, has an optional parameter: the x and y positions of window #0 in a one
or two digit number (or string).

If no parameters are given, the full set of standard windows will be opened. Otherwise, only
window #0 will be opened: 6 rows high and 42 mode 4 characters wide within a 1 pixel wide
border (total 62x256 pixels).

If only one digit is given, this is the SBASIC "row" number: row 0 is at the top, row 1 starts at
screen line 64, row 4 is just below the standard window #0.

If two digits are given, this is the SBASIC "column, row" (x,y) position: column 0 is at the left,
column 1 starts at 256 pixel in from the left.

syntax: row:= numeric_expression
columnrow:= numeric_expression

SBASIC [row | columnrow]

example: i. SBASIC {create an SBASIC daughter with the 3 standard windows}
ii. SBASIC 1 {create an SBASIC daughter with just channel #0 in row 1}
iii. SBASIC 24 {create an SBASIC daughter to the right of and below the

 standard windows (an 800x600 display is required)}

comment: Because it is quite normal for an SBASIC job to have only #0 open, all the standard
commands which default to window #1 (PRINT, CLS etc.) or window #2 (ED, LIST
etc.) will default to window #0 if channel #1 or channel #2 is not open. This may not
apply to extension commands.

You may start a SBASIC with the EXEP command, which allows you to provide a
string that is sent to #0 of the SBASIC job.

EXEP “SBASIC”;”lrun ‘win1_program_bas’”

Starts a SBASIC job, which then attempts to load and run the program
‘win1_program_bas’

When a SBASIC job is started with EXEC, then no channels are initially opened. So
if any commands try to use #0, #1, or #2. It will cause #0 to be opened as a small
control window.

04/23 115

SBYTES
SBYTES_O devices, directory devices
SBYTES allows areas of QPC2 memory to be saved on a QPC2 device.

SBYTES_O as SBYTES but overwrites the file if it exists.

If a channel number of an open channel is supplied in place of a filename, then SBYTES will
attempt to save the file to the channel.

syntax: start_address:= numeric_expression
 length:= numeric_expression

device:= filename | channel

 SBYTES device, start_address, length
SBYTES_O device, start_address, length

example: i. SBYTES flp1_screendata, SCR_BASE, SCR_LLEN * SCR_YLIM
 {save screen image on flp1_test_program}
 ii. SBYTES_O ram1_test_program,50000,1000
 {save memory 50000 length 1000 bytes on ram1_test_program

 overwriting if it already exists}
 iii. SBYTES neto_3,32768,32678
 {save memory 32768 length 32768 bytes on the network}
 iv. SBYTES ser1,0,32768
 {save memory 0 length 32768 bytes on serial channel 1}

v. 10 OPEN#5,ram1_data {open channel}
20 SBYTES#5,50000,1000 {save 1000 bytes from address 50000}
30 CLOSE#5 {close channel}

SCALE graphics
SCALE allows the scale factor used by the graphics procedures to be altered. A scale of 'x'
implies that a vertical line of length 'x' will fill the vertical axis of the window in which the figure is
drawn. A scale of 100 is the default. SCALE also allows the origin of the coordinate system to
be specified. This effectively allows the window being used for the graphics to be moved around
a much larger graphics space.

syntax: x:=numeric_expression
 y:=numeric_expression
 origin:= x,y
 scale:= numeric_expression

 SCALE [channel,] scale, origin

example: i. SCALE 0.5,0.1,0.1 {set scale to 0.5 with the origin at 0.1,0.1}
 ii. SCALE 10,0,0 {set scale to 10 with the origin at 0,0}

iii. SCALE 100,50,50 {set scale to 100 with the origin at 50,50}

116 04/23

SCROLL windows
SCROLL scrolls the window attached to the specified or default channel up or down by the
given number of pixels. Paper is scrolled in at the top or the bottom to fill the clear space.

An optional third parameter can be specified to obtain a part screen scroll.

syntax: part:= numeric_expression
 distance:= numeric_expression

where part = 0 - whole screen (default is no parameter)
 part = 1 - top excluding the cursor line
 part = 2 - bottom excluding the cursor line

 SCROLL [channel,] distance [, part]

If the distance is positive then the contents of the screen will be shifted down.

example: i. SCROLL 10 {scroll down 10 pixels}
 ii. SCROLL -70 {scroll up 70 pixels}
 iii. SCROLL -10,2 {scroll the lower part of the window up 10 pixels}

SCR_BASE
SCR_LLEN windows
SCR_BASE will return the base address of the screen attached to the specified or default
channel.

SCR_LLEN will return the line length in bytes of the screen attached to the specified or default
channel.

syntax: SCR_BASE [(#channel)]
SCR_LLEN [(#channel)]

example: i. PRINT SCR_BASE
ii. PRINT SCR_LLEN (#1)

comment: In current versions, the values returned are the same for all screen channels.

SCR_XLIM
SCR- YLIM windows
SCR_XLIM will return the maximum number of pixels across the screen (+1), available for the
screen attached to the specified, or default channel.

SCR_YLIM will return the maximum number of pixels down the screen (+1), available for the
screen attached to the specified, or default channel.

syntax: SCR_XLIM [(#channel)]
SCR_YLIM [(#channel)]

example: i. PRINT SCR_XLIM
ii. PRINT SCR_YLIM(#1)

comment: The values returned are not the same as the current window size, but they defines
the maximum size that a window can be. SCR_XLIM and SCR_YLIM should only be
called for a primary window, usually #0 the default channel, for an SBASIC job.

04/23 117

SDATE clock
The SDATE command allows QPC2’s clock to be reset.

syntax: year:= numeric_expression
 month:= numeric_expression
 day:= numeric_expression
 hours:= numenc_expression
 minutes:= numeric_expression
 seconds:= numeric_expression

 SDATE year, month, day, hours, minutes, seconds

example: i. SDATE 1984,4,2,0,0,0
 ii. SDATE 1984,1,12,9,30,0
 iii. SDATE 1984,3,21,0,0,0

SELect
END SELect conditions
SELect allows various courses of action to be taken depending on the value of a variable.

define: select_variable:= numeric_variable
 select_item:= | expression
 | expression TO expression
 select_list:= | select_item *[, select_item]*

long: Allows multiple actions to be selected depending on the value of a select_variable.
The select variable is the last item on the logical line. A series of SBASIC statements
follows, which is terminated by the next ON statement or by the END SELect
statement. If the select item is an expression then a check is made within
approximately 1 part in 10-7, otherwise for expression TO expression the range is
tested exactly and is inclusive. The ON REMAINDER statement allows a, "catch-all"
which will respond if no other select conditions are satisfied.

syntax: SELect ON select_variable
 *[[ON select_variable] = select_list
 statements] *

 [ON selectvariable] = REMAINDER
 statements

END SELect

example: 100 LET error number = RND(1 TO 10)
 110 SELect ON error_number
 120 ON error_number =1
 130 PRINT "Divide by zero"
 140 LET error_number = 0
 150 ON error_number = 2
 160 PRINT "File not found"
 170 LET error_number = 0
 180 ON error_number = 3 TO 5
 190 PRINT "Microdrive file not found"
 200 LET error_number = 0
 210 ON error_number = REMAINDER
 220 PRINT "Unknown error"
 230 END SELect

If the select variable is used in the body of the SELect statement then it must
match the select variable given in the select header.

118 04/23

Short: The short form of the SELect statement allows simple single line selections to be
made. A sequence of SBASIC statements follows on the same logical line as the
SELect statement. If the condition defined in the select statement is satisfied then
The sequence of SBASIC statements is processed.

syntax: SELect ON select_variable = select_list : statement *[: statement] *

example: i. SELect ON test data =1 TO 10 :
 PRINT "Answer within range"

ii SELect ON answer = 0.00001 TO 0.00005 :
 PRINT "Accuracy OK"

 iii. SELect ON a =1 TO 10 : PRINT a ! "in range"

comment: The short form of the SELect statement allows ranges to be tested more easily
than with an IF statement. Compare example ii. above with the corresponding IF
statement.

SEND_EVENT
FSEND_EVENT pointer enviroment
SEND_EVENT is used to notify events to another job. The job ID can be the whole number, the
job number and tag or the job name.

The FSEND_EVENT function is the same as the SEND_EVENT command, except that it
returns an error code, rather than stopping the program.

syntax: jobID:= numeric_expression
 | job_number , job_tag
 | job_name

event:= numeric_expression {in the range 1 to 256}

SEND_EVENT jobID, event
FSEND_EVENT(jobID, event)

example: i. SEND_EVENT 'fred',9 {send events 1 and 8 (1 +8=9) to job fred}
ii. SEND_EVENT 20,4,8 {send event 8 to job 20, tag 4}
iii. SEND_EVENT OJOB(-1),2 {send event 2 to my owner}
iv. result = FSEND_EVENT(20,4,8) {send event 8 to job 20, tag 4}

comment: FSEND_EVENT will return either 0. For no error, or -2. For an invalid job number.

SER_BUFF devices
SER_BUFF specifies the output buffer size and, optionally, the input buffer size. The output
buffer should be at least 5 bytes to avoid confusion with the port number. If the output buffer is
specified as zero length, a dynamic buffer is used.

syntax: port:= numeric_expression
input_buff:= numeric_expression
output_buff:= numeric_expression

SER_BUFF port, output_buff, input_buff

example: i. SER_BUFF 200 {200 byte output buffer on SER1}
ii. SER_BUFF 4,0,80 {dynamic output buffer, 80 byte input buffer on SER4}

04/23 119

SER_CDEOF devices
SER_CDEOF specifies a timeout from the Carrier Detect line being negated to the channel
returning an end of file. The timeout should be at least 5 ticks to avoid confusion with the port
number. If the timeout is zero, the Carrier Detect line is ignored.

syntax: port:= numeric_expression
ticks:= numeric_expression

SER_CDEOF port, ticks

example: SER_CDEOF 2,100 {wait 100 ticks before timing out}

SER_CLEAR
SER_ ABORT devices
SER_CLEAR and SER_ABORT clear the output buffers of any closed channels to the port.
Channels still open are not affected. SER_ABORT also sends the " ABORTED" message to the
port.

syntax: port:= numeric_expression

SER_CLEAR port
SER_ABORT port

example: i. SER_CLEAR 1 {clear output to SER1}
ii. SER_ABORT 3 {abort output to SER3}

SER_FLOW devices
SER_FLOW specifies the flow control for the port: "Hardware", "XON/XOFF" or "Ignored". It
usually takes effect immediately. If, however, the current flow is "Hardware" and handshake line
CTS is negated and there is a byte waiting to be transmitted, the change will not take effect until
either the handshake is asserted, or there is an output operation to that port

The default flow control is hardware unless the port does not have any handshake connections,
in which case XON/XOFF is the default.

The flow control for a port is reset if a channel is opened to that port with a specific handshaking
(H, X or I) option.

syntax: port:= numeric_expression
hand_shake:= H | X | I {Hardware, XON/XOFF, or Ignore}

SER_FLOW port, hand_shake

example: i. SER_FLOW X {XON/XOFF on SER1}
ii. SER_FLOW 2,H {Hardware (default) handshaking on SER2}

SER_GETPORT$ devices
The SER_GETPORT$ function will return as a string the Microsoft Windows device that the
SER port is connected to, for example “COM1”.

syntax: port:= integer_numeric_expression

SER_GETPORT$ (port)

example: PRINT SER_GETPORT$ (1) {displays device connected to SER1}

120 04/23

SER_PAUSE
Not used in QPC2. Sets the length of the stop bits on the serial ports.

SER_SETPORT devices
SER_SETPORT will set the supplied PC’s COM port connection to the supplied SER port.

The change will take effect on the next open of the specified serial port.

syntax: port:= integer_numeric_expression
com:= string_expression

SER_SETPORT port, com

example: SER_SETPORT 4, “COM2” {connects SER4 to COM2}

SER_ROOM devices
SER_ROOM specifies the minimum level for the spare room in the input buffer. When the input
buffer is filled beyond this level, the handshake (hardware or XOFF as specified by
SER_FLOW) is negated to stop the flow of data into the port Some spare room is required to
handle overruns (not all operating systems can respond as quickly as SMSQ). For hardware
handshaking, a few spare bytes are all that is required. For connection to a dinosaur using
XON/XOFF handshaking, up to 1000 spare bytes may be required.

syntax: port:= numeric_expression
room:= numeric_expression

SER_ROOM port, room

example: i. SER_FLOW 2,X : SER_ROOM 2,1000 {connect SER2 to a UNIX system}
ii. SER_FLOW 1,H : SER_ROOM 1,4 {hardware handshaking on SER1]

comment: SER_ROOM will not usually be required as SER_BUFF also sets SER_ROOM to
one quarter of the buffer size. You will not succeed in setting SER_ROOM to greater
than SER_BUFF, however, as SER_ROOM will always ensure that the buffer is at
least twice the size of the spare room.

SER_USE devices
SER_USE specifies a name for the serial ports. The name can be SER or PAR. SER_USE is
provided for compatibility, its use is not recommended.

syntax: SER_USE [name]

example: i. SER_USE PAR {From now on, when you open PAR, you open a serial
 port}

ii. SER_USE SER {Sets you back to normal}
iii. SER_USE { ..as does this}

04/23 121

SET_FUPDT
SET_FBKDT, SET_FVERS directory devices
These three commands are used to set the update date, the backup date, and the version
number of a file.

SET_FUPDT will set the update date in the specified file, or the file connected to the specified
or default channel, to the current or specified date and time.

SET_FBKDT will set the backup date in the specified file, or the file connected to the specified
or default channel, to the current or specified date and time.

SET_FVERS will set the version number of the specified file, or the file connected to the
specified or default channel, to the specified version number.

syntax: SET_FUPDT [\filename ,] | [channel,] [date]
SET_FBKDT [\filename ,] | [channel,] [date]
SET_FVERS [\filename ,] | [channel,] [numeric_expression]

example: i. SET_FUPDT #5 {set update date to now}
ii. SET_FUPDT \flp1_fred,DATE–24*60*60 {set update of flp1_fred to

 24 hours ago}
iii. SET_FBKDT \flp1_fred {set backup date of flp1_fred to now}
iv. SET_FBKDT #4,DATE(2002,7,10,13,32,15)

{set backup date to 10th July 2002
 1:32 PM and 15 seconds}

v. SET_FVERS #5 {do not increment version number}
vi. SET_FVERS #5,1 {set version number to 1}
vii. SET_FVERS \flp1_fred,2 {set version number of flp1_fred to 2}

comment: A date or a version number of 0 will have the same effect as omitting it. A date or a
version number of –1 will have no effect on the file. If the update date has been set it
will not be reset when the file is closed. If the version number has been set it will not
be incremented when the file is closed.

SEXEC
SEXEC_O job creation
Will save an area of memory in a form which is suitable for loading and executing with the
EXEC command.

SEXEC_O is the same as SEXEC, but will overwrite the file if it already exists.

The data saved should constitute a machine code program.

If a channel number of an open channel is supplied in place of a filename, then SBYTES will
attempt to save the file to the channel.

syntax: device:= filename | channel
start_address:= numeric_expression {start of area}

 length:= numeric_expression {length of area}
 data_space:= numeric_expression {length of data area which will be required by

 the program}
SEXEC device, start_address, length, data_space
SEXEC_O device, start_address, length, data_space

example: i. SEXEC flp1_program,262144,3000,500
ii. 10 OPEN#5,flp1_program {open channel}

20 SEXEC_O#5,50000,1000 {save 1000 bytes from address 50000}
30 CLOSE#5 {close channel}

The QDOS, SMSQ/E system documentation should be read before attempting to use this
command.

122 04/23

SIN maths function
SIN will compute the sine of the specified parameter.

syntax: angle:= numeric_expression {range -10000..10000 in radians}

 SIN(angle)

example: i. PRINT SIN(3)
 ii. PRINT SIN(3.141592654/2)

SLUG
SLUG will delay all subsequent reads of the keyboard by a supplied amount in thousandths of a
second (milliseconds). This is to allow some programs which are too fast in QPC2 to be slowed
down.

syntax: SLUG numeric_expression

example: SLUG 15 {add a 15 thousandths of a second delay}

SOUND_AY programmable sound generator
SOUND_AY will either clear the sound channel and the registers for the supplied channel and
the corresponding interrupt list. Or sets the sound output to the supplied sound channel, the
supplied frequency in hertz, and volume 0 - 15.

If the volume is set to 16 then the ENVELOPE setting are used.

If no parameters are supplied, then all sound channels will be cleared.

syntax: ay_channel:= numeric_expression {1 to 3}
frequency:= numeric_expression {23 to 93750}
volume:= numeric_expression {0 to 16}

SOUND_AY [ay_channel]
SOUND_AY ay_channel, frequency, volume

example: i. SOUND_AY {clear all sound channels}
ii. SOUND_AY 3 {clear sound channel 3}
iii. SOUND_AY 1,1000,15 {set channel 1 to 1KHz at maximum volume}
iv. ENVELOPE 12,4000

SOUND_AY 1,1000,16

note: For more information on the AY-3 sound system, see the QPC Concepts document.

warning: SOUND_AY only works on AY-3 chip 0. Not on AY-3 chip 1.

SOUND_AY with parameters is currently broken as it does not write to the registers
correctly.
See the QPC Concepts document for a patch program.

04/23 123

SPJOB job control
SPJOB is a command to set a jobs priority.

syntax: job_identifier:= | job_number , tag_number
| job_number + (tag_number * 65536)

id:= job_identifier

SPJOB id | name , priority

example: i. SPJOB demon,1 {set the priority of the Job called 'demon' to 1}
ii. SPJOB 2,1,80 {set the priority of the Job number 2, Tag number 1

 to 80}

comment: If a name is given rather than a Job ID, then the procedure will search for the first
Job it can find with the given name.

Setting a jobs priority to zero will suspend the job.

SPL
SPLF devices
SPL and SPLF will copy files in the background in the same way as COPY_O, but is primarily
intended for copying files to a printer. As an option, a form feed (ASCII <FF>) can be sent to the
printer at the end of file.

syntax: SPL name TO name {spool a file}
SPLF name TO name {spool a file, <FF> at end}

The separator TO is used for clarity, you may use a comma instead.

A variation on the SPL and SPLF commands is to use SBASIC channels in place of the
filenames. These channels should be opened before the spooler is invoked:

syntax: SPL #channel3 TO #channel2

Where channel3 must have been opened for input and channel2 must have been opened for
output.

The normal use of this command is with one name only:

example: i. SPL win1_doc_text TO par {spool win1_doc_text to par}
ii. SPL_USE ser {set spooler default}

.....
SPLF fred {spool fred to ser, adding a form feed

 to the file}

comment: When used in this way, if the default device is in use, the Job will be suspended until
the device is available. This means that many files can be spooled to a printer at
once.

124 04/23

SPL_USE
SPL_USE is used to set a default, which is used to find the destination filename or device for
background spooling.

If the supplied device and filename is not found in the system, Then the SPL_USE default will
be added to the beginning of the supplied filename, and another attempt will be made to
execute the command.

syntax: directory_name:= device*[subdirectory_]*

SPL_USE device_name

example i. DEST_USE flp2_old {default is FLP2_OLD_}

SPL fred

ii. SPL_USE flp2_old_ {default is FLP2_OLD_}

SPL fred

Both of these examples will spool FRED to FLP2_OLD_FRED. Whereas if
SPL_USE is used with a name without a trailing '_' (i.e. not a directory name) as
follows

SPL_USE ser {default is SER}

SPL fred

then FRED will be spooled to SER (not SER_FRED).

Note that SPL_USE overwrites the DEST_USE default and vice versa

SP_GET system palette
SP_GET will retrieve the colour definition of system palette colour scheme and store it at the
supplied address.

The colour definitions may then be changed as required, and written back to be made available
for use with the command SP_SET.

The optional ‘number’ parameter, selects which palette to use (default is 0).

‘address’ is the base of an area in memory to store the colour definitions.

‘first’ is the number of the first system palette colour to retrieve (starting from 0).

‘count’ is the number of colour definitions to retrieve .

syntax: number:= 0 | 1 | 2 | 3
addresss:= numeric_expression
first:= numeric_expression
count:= numeric_expression

SP_GET [channel,] [number,] address, first, count

example: 10 totcol% = SP_GETCOUNT {get all the colours of a system palette}
20 address = ALCHP(totcol% * 2) + 4
30 first = 0
40 SP_GET #1, 0, address, first, totcol%

warning: The space pointed to by address’ must have enough space for the number of
colours to be retrieved. This is not checked by the system.

04/23 125

SP_GETCOUNT system palette
The function SP_GETCOUNT will return the number of elements contained in the system
palette scheme.

Each system palette has the same number of elements.

syntax: SP_GETCOUNT

example: PRINT SP_GETCOUNT

SP_JOBOWNPAL job palette
SP_JOBOWNPAL allows you to use an externally defined system colour palette in a job.

This allows for more than the 4, internally defined, system palette colour schemes to be used.

syntax: job_identifier:= | job_number, tag_number
| job_number + (tag_number * 65536)

id:= job_identifier
palette_pointer:= numeric_expression

SP_JOBOWNPAL [channel,] id | name, palette_pointer

example: i. SP_JOBOWNPAL #4, 2, 1, palette%
ii. SP_JOBOWNPAL -1, palette%

SP_JOBPAL job palette
SP_JOBPAL will make active one of the 4 internally defined system palette colour schemes in a
job.

syntax: job_identifier:= | job_number, tag_number
| job_number + (tag_number * 65536)

id:= job_identifier
palette_number:= 0 | 1 | 2 | 3

SP_JOBPAL [channel,] id | name, palette_number

example: i. SP_JOBPAL #4, 2, 1, 0 {set job ‘2,1’ system palette to scheme 0}
ii. SP_JOBPAL -1,3 {set this jobs system palette to scheme 3}

SP_RESET system palette
SP_RESET will restore the system palette colour scheme (default 0) to it’s original values.

syntax: palette_number:= numeric_expression

SP_RESET [channel,] [palette_number]

example: SP_RESET 2

126 04/23

SP_SET system palette
SP_SET will set the colour definitions of a system palette colour scheme.

The optional ‘number’ parameter, selects which system palette colour scheme to use
(default 0).

‘address’ is the base of an area in memory where the colour definition entries are stored.

‘first’ is the number of the first system palette colour to set (starting from 0).

‘count’ is the number of colours to set.

syntax: number:= 0 | 1 | 2 | 3
address:= numeric_expression
first:= numeric_expression
count:= numeric_expression

SP_SET [channel,] [number,] address, first, count

example: 10 totcol% = SP_GETCOUNT {get all the colours of a system palette}
20 address = ALCHP(totcol% * 2) + 4
30 first = 0

.

. {change colours as required}

.

.
100 SP_SET #1, 0, address, first, totcol%

warning: The space pointed to by 'address' must have enough space for the number of
colours to be set. This is not checked by the system.

SQRT maths function
The SQRT function will compute the square root of the specified argument. The argument must
be greater than or equal to zero.

syntax: SQRT (numeric_expression) {range >= 0}

example: i. PRINT SQRT(3) {print square root of 3}
 ii. LET C = SQRT(a^2+b^2) {let c become equal to the square root of a^2 + b^2}

STAT directory devices
STAT will obtain and display in the window attached to the specified or default channel the
directory device statistics for that drive.

If a backslash (\) and a name is supplied in place of a channel, then the statistics are sent to the
name.

syntax: STAT [#channel,] name
STAT \name1, name2

example: i. STAT #3,win1_ {sends the statistics of win1_ to #3}
 ii. STAT \ram1_file,win1_ {sends the statistics of win1_ to ram1_file}

comment: Both the channel and the name are optional

04/23 127

STOP SBASIC
STOP will terminate execution of a program and will return SBASIC to the command interpreter.

syntax: STOP

example: i. STOP
 ii. IF n = 100 THEN STOP

You may CONTINUE after STOP.

comment: The last executable line of a program will act as an automatic stop.

STRIP
WM_STRIP windows
STRIP will set the current strip colour in the window attached to the specified or default channel.
The strip colour is the background colour which is used when OVER 1 is selected. Setting
PAPER will automatically set the strip colour to the new PAPER colour.

WM_STRIP will set the colour of the strip using one of the Windows Manager colour palettes.

syntax: wm_colour:= numeric_expression {range 0 … 65535}

STRIP [channel,] colour
WM_STRIP [channel,] wm_colour

example: i. STRIP 7 {set a white strip}
 ii. STRIP 0,4,2 {set a black and green stipple strip}

comment: The effect of STRIP is rather like using a highlighting pen.

SUSJB multitasking
SUSJB will suspend a job for a given number of 20mS ticks. If the number of ticks is set to -1,
then the wait will be infinite.

The job identifier may be either a job number and job tag (as displayed by the JOBS command),
or the job name.

syntax: job_identifier:= | job_number , tag_number
| job_number + (tag_number * 65536)

id:= job_identifier
name:= | name

 | string_expression

ticks:= numeric expression

SUSJB [id | name] , ticks

example: i. SUSJB 5,7,50 {suspend job 5,7 for 50 ticks (1 second)}
ii. SUSJB 'myprog',10 {suspend the job 'myprog' to 10 ticks (1/5 second)

128 04/23

SYSSPRLOAD sprites
SYSSPRLOAD allows you to replace any of the default system sprites with new ones.

syntax: sprite_number:= numeric_expression

SYSSPRLOAD sprite_number, filename

example: i. SYSSPRLOAD 0, win1_newarrow_spr {replace default arrow pointer}
ii. SYSSPRLOAD 36, win1_newcursor_spr {replace cursor}

comment: SYSSPRLOAD 36, win1_newcursor_spr is equivalent to the commands
CURSPRLOAD win1_newcursor_spr followed by a CURSPRON

TAN maths functions
The TAN function will compute the tangent of the specified argument. The argument must be in
the range -30000 to 30000 and must be specified in radians.

syntax: TAN (numeric_expression) {range -30000..30000}

example: i. PRINT TAN(3) {print tan 3}
 ii. PRINT TAN(3.141592654/2) {print tan PI/2}

TH_FIX
Fix the THING system to the old type (SuperBASIC call)

TK2_EXT
If, for any reason, some of the SBASIC extensions have been re-defined, TK2_EXT will reassert
the common commands and functions.

syntax: TK2_EXT

04/23 129

TRA
TRA allows you to set up a translation table for a printer.

The SBASIC TRA command differs very slightly in use from the QL JS and MG TRA. The
differences are quite deliberate and have been made to avoid the unfortunate interactions
between functions of setting the Operating System message table and setting the printer
translate tables. If you only wish to set the printer translate tables, the only difference is that
TRA 0 and TRA 1 merely activate and deactivate the translate. They do not smash the pointer
to the translate tables if you have previously set it with a TRA address command.

If you wish to change the system message tables, then the best way is to introduce a new
language: this is done by. LRESPRing suitable message tables.

Language dependent printer translate tables are selected by the TRA 1,lang command. If no
language code or car registration code is given, the currently defined language is used.

Language independent translate tables are set by the TRA n command where n is a small odd
number.

Private translate tables are set by the TRA addr command where addr is the address of a table
with the special language code $4AFB.

syntax: lang:= language_code | registration
address:= numeric_expression

TRA [lang | address]

example: i. TRA 0 {translate off, table unchanged}
ii. TRA 0, 44 {translate off, table set to English}
iii. TRA 0, F {translate off, table set to French}
iv. TRA 1 {translate on, table unchanged}
v. TRA 1, GB {translate on, table set to English}
vi. TRA 1, 33 {translate on, table set to French}
vii. TRA 3 {translate on, table set to IBM graphics}
viii.TRA 5 {translate on, table set to GEM VDI}

A = RESPR (512): LBYTES "tratab",A: TRA A {translate on, table set to table
 in "tratab"}

comment: To use the language independent tables, your printer should be set to USA (to
ensure that you have all the # $ @ [] { } \ |^~ symbols which tend to go missing if
you use one of the special country codes (thank you ANSI)), and select IBM
graphics or GEM character codes as appropriate.

For the IBM tables, QDOS codes $C0 to $DF are passed through directly and QDOS
codes $E0 to $EF are translated to $B0 to $BF to give you all the graphic characters
in the range $B0 to $DF. QDOS codes $F0 to $FF are passed though directly to give
access to the odd characters at the top of the IBM set. For the GEM tables, QDOS
codes $C0 to $FF are passed through directly.

TRUNCATE directory devices
TRUNCATE will delete the contents of the file connected to the specified or default channel,
from the current or specified position to the end of the file.

syntax: TRUNCATE #channel\position

example: TRUNCATE #dbchan {truncate the file open on channel dbchan}

comment: If the position is not given, the file will be truncated to the current position

130 04/23

TURN
TURNTO turtle graphics
TURN allows the heading of the 'turtle' to be turned through a specified angle while TURNTO
allows the turtle to be turned to a specific heading.

The turtle is turned in the window attached to the specified or default channel.

The angle is specified in degrees. A positive number of degrees will turn the turtle anti-clockwise
and a negative number will turn it clockwise.

Initially the turtle is pointing at 00 , that is to the right hand side of the window.

syntax: angle:= numeric_expression {angle in degrees}

 TURN [channel,] angle
 TURNTO [channel,] angle

example: i. TURN 90 {turn through 900 }
 ii. TURNTO 0 {turn to heading 00 }

UNDER windows
Turns underline either on or off for subsequent output lines. Underlining is in the current INK
colour in the window attached to the specified or default channel.

syntax: switch:= numeric_expression {range 0..1}

 UNDER [channel,] switch

example: i. UNDER 1 {underlining on}
 ii. UNDER 0 {underlining off}

VER$ SBASIC
VER$ will return system version information.

VER$ without parameters, or with a parameter of 0 will return the SBASIC version.
A parameter of 1 will return the SMSQ version number, a parameter of –1 will return the job ID,
and a parameter of –2 will return the address of the system variables.

syntax: VER$ [(numeric_expression)]

example: i. PRINT ver$ {prints HBA (or later SBASIC version ID)}
ii. PRINT ver$(0) {also prints HBA (or later SBASIC version ID)}
iii. PRINT ver$(1) {prints 3.38 (or later SMSQ version number)}
iv. PRINT ver$(-1) {print the Job ID (0 for initial SBASIC)}
v. PRINT ver$(-2) {prints the address of the system variables (163840)}

04/23 131

VIEW directory devices
VIEW allows a file to be examined in a window on the QPC2 display, or sent to a device. The
default window is #1.

VIEW truncates lines to fit the width of the window. When the window is full, CTRL F5 is
generated. If the output device (or file) is not a console, then lines are truncated to 80
characters.

syntax: VIEW [channel,] device
VIEW \device, device

example: i. VIEW win1_boot {View file 'win1_boot' in window #1
 ii. VIEW #3, flp1_readme_text {View file 'flp1_readme_text' in window #3}
 iii. VIEW \ser1,win1_boot {Send file 'win1_boot' to serial port 1}

WAIT_EVENT pointer environment
The WAIT_EVENT function is used to wait for one or more events. 8 events are defined; they
are numbered 1, 2, 4, 8 ...256. The timeout is an optional 9th event.

The function returns the event or events that have occurred. The events that are returned are
removed from the job's "event accumulator". Note that, if WAIT_EVENT is called to wait for
events 2 or 4 and events 2 and 8 have occurred, only event 2 is returned: event 8 remains
pending and can be checked on another call.

If a timeout is specified, then, if no event of interest has occurred before the end of the timeout,
the call will return the value 0 (no events). A timeout 0 can be used to check for events.

syntax: event_mask:= numeric_expression {in range 1 to 256}
timeout:= numeric_expression

WAIT_EVENT (event_mask, [timeout])

example: i. evt = WAIT _EVENT (6) {Wait for event 2 or 4 (2+4=6)
 Events 2 and 8 are notified by another job so
 the wait is terminated and evt is set}

ii. PRINT evt {Prints 2}
iii. PRINT WAIT_EVENT (15) {Wait for event 1,2,3,4, or 8, prints 8 as event 8

 is pending}
iv. PRINT WAIT_EVENT (15) {Wait for event 1,2,3,4, or8, wait as no events

 now pending}
v. evt = WAIT _EVENT (6,50) {Wait for event 2 or 4 (2+4=6) for no more

 than 1 second No events are notified by
 another job so the wait is terminated after one
 second and evt is set to 0}

vi. PRINT evt {Prints 0}
vii. PRINT WAIT_EVENT (3,0) {Test for event 1 or2 without waiting}

132 04/23

WDIR
WSTAT directory devices
WDIR will obtain and display in the window attached to the specified or default channel the
directory of the device using wild card names (Add WDIR to DIR)

WSTAT will obtain and display in the window attached to the specified or default channel the
directory of the device together with file size and update date. Using wild card names

syntax: WDIR [#channel,] name {list of files}
WSTAT [#channel,] name {list of files and their Statistics}

example: i. WDIR list current directory to #1
ii. WDIR #channel list current directory to #channel
iii. WDIR \par list current directory to the parallel port
iv. WDIR win1_data_ list directory “win1_data_” to #1
v. WSTAT #4, flp2_ list directory statistics of flp2_ to channel 4
vi. WDIR \name1, name2 list directory 'name2' to 'name1'
vii. WDIR \ser, _asm list all _asm files in current directory to SER
viii.WSTAT flp1_ list all file statistics on FLP1_ in window #1
ix. WDIR #3 list all files in current directory to channel #3

WHEN ERROR
END WHEN error handling
Error handling is invoked by a WHEN ERROR clause. Unlike procedure and function definitions,
these clauses are static. The error handling within a WHEN ERROR clause is set up when the
clause is executed, but is only actioned WHEN an ERROR occurs. This means that a program
may have more than one WHEN ERROR clause. As each one is executed, the error processing
within that clause replaces the previously defined error processing.

The clause is opened with a WHEN ERROR statement, and closed with an END WHEN
statement. Within the clause there may be any normal type of statement. (Although it might be
better to avoid calling SBASIC functions or procedures!) A WHEN ERROR clause is exited by a
STOP, CONTINUE, RETRY, RUN, LOAD or LRUN command. Furthermore RUN, NEW,
CLEAR, LOAD, LRUN, MERGE and MRUN will reset the error processing.

syntax: WHEN ERROR

There are some additional facilities intended for use within WHEN ERROR clauses.

 ERROR functions

 These functions correspond to each of the system error codes

ERR_NC Not Complete, ERR_NJ Invalid Job,
ERR_OM Out of Memory, ERR_OR Out of Range,
ERR_BO Buffer Full, ERR_NO Channel not Open,
ERR_NF Not Found, ERR_EX Already Exists,
ERR_IU In Use, ERR_EF End of File,
ERR_DF Drive Full, ERR_BN Bad Name,
ERR_TE Transmit Error, ERR_FF Format Failed,
ERR_BP Bad Parameter, ERR_FE Bad or Changed Medium,
ERR_XP Error in Expression, ERR_OV Overflow,
ERR_NI Not Implemented, ERR_RO Read Only,
ERR_BL Bad line

and return the value TRUE if the error, which caused the WHEN ERROR clause to be invoked,
is of that type.

04/23 133

example: 10 WHEN ERROR
20 IF ERR_BP THEN PRINT “Bad Parameter error”
30 IF ERR_OV THEN PRINT “An Overflow has occurred”
40 IF ERR_NO THEN PRINT “Channel is not open”
50 END WHEN

WIDTH devices
WIDTH allows the default width for non-console based devices to be specified, for example
printers.

syntax: line_width:= numeric_expression

 WIDTH [channel,] line_width

example: i. WIDTH 80 {set the device width to 80}
 ii. WIDTH #6,72 {set the width of the device attached to channel 6 to 72}

WINDOW windows
Allows the user to change the position and size of the window attached to the specified or
default channel. Any borders are removed when the window is redefined.

Coordinates are specified using the pixel system relative to the screen origin.

syntax: width:= numeric_expression
 depth:= numeric_expression
 x:= numeric_expression
 y:= numeric_expression

 WINDOW [channel,] width, depth, x, y

example: WINDOW 30, 40, 10, 10 {window 30x40 pixels at 10,10}

WIN_DRIVE
WIN_DRIVE$
WIN_DRIVE allows you define the DOS path and filename for the WIN directory devices.

WIN_DRIVE$ is a function to return the currently defined DOS path and filename of WIN
directory devices.

syntax: WIN_DRIVE drive_number, filename
WIN_DRIVE$ (drive_number)

example: i. WIN_DRIVE 2,"D:\QPC.WIN" {WIN2_ is assigned to the WIN file QPC.WIN}
ii. PRINT WIN_DRIVE$(2) {will tell you the current filename}

134 04/23

WIN_FORMAT
Before you can issue the FORMAT command for a WIN device, you have to allow the drive to
be formatted. SMSQ/E has a two-level protection scheme, to make sure you (or somebody else)
cannot format your hard disk accidentally. All drives are protected by default, so you have to
declare them to be formattable before you issue the FORMAT command.
FORMAT will fail if there is not sufficient space left on the specified drive, if the medium is write-
protected, or if the file *.WIN already exists and contains invalid information (e.g. a DOS-
subdirectory).

syntax: switch:= 0 | 1

WIN_FORMAT drive [,switch]

example: WIN_FORMAT 1 {Allow WIN1_ to be formatted}
FORMAT WIN1_10 {Create a 10 Megabyte WIN device on…

 you have to echo the two characters displayed ...
WIN_FORMAT 1,0 {protect WIN1_ again against unwanted formatting}

WIN_REMV
WIN_REMV allows support for removable drives, like ZIP or SyQuest. It allows you to declare a
WIN device to be removable.

When a drive is declared removable, the WIN file is closed after all SMSQ files on it are closed.
This can also be used to share a single WIN file over a network (files on a remote computer are
automatically set to removable). Just as long as one QPC2 instance has any open files on the
drive, all others cannot access it.

syntax: switch:= 0 | 1

WIN_REMV drive_number, switch

example: i. WIN_REMV 2 {declares WIN2_ to be a removable}
ii. WIN_REMV 2,1 {does the same to WIN2_}
iii. WIN_REMV 2,0 {declares WIN2_ is not a removable}

WIN_SLUG
WIN_START, WIN_STOP
Commands are for controlling a physical hard disk drive. QPC2 WIN drives are files, So these
commands have no purpose in QPC2.

WIN_USE directory devices
WIN_USE allows renaming of the WIN device. WIN_USE without a parameter will reset the
name of WIN back to WIN.

syntax: WIN_USE [name]

example: i. WIN _USE dos : LOAD dos2_prog {loads 'prog' from WIN2_ }
ii. WIN _USE {and now its name is WIN again}
iii. WIN_USE ram : DIR ram1_ {displays directory of WIN1_}

04/23 135

WIN_WP
WIN_WP sets the write protection on a WIN device.

syntax: drive:= numeric expression
flag:= numeric expression {0 or 1}

WIN_WP drive,flag

example: i. WIN_WP 1,1 {set write protect for the drive accessed by WIN1}
ii. WIN_WP 1,0 {clear write protect for the drive accessed by WIN1}

WMON
WTV windows
There are two commands for resetting the windows to the turn-on state.

WMON will reset the windows #0, #1, and #2 into ‘Monitor’ mode.
WTV will reset the windows #0, #1, and #2 into ‘TV’ mode.

A border has been added to window #0 to make it clearer where an SBASIC Job is on the
screen.

Only the window sizes, positions and borders are reset by these commands, the paper strip and
ink colours remain unchanged.

If you have a screen larger than 512x256 pixels, it is useful to be able to re-position the SBASIC
windows. The WMON and WTV commands may take an extra pair of parameters: the pixel
position of the top left hand comer of the windows. If only one extra parameter is given, this is
taken to be both the x and y pixel positions.

If the mode is omitted, the mode is not changed, and, if possible, the contents are preserved
and the outline (if defined) is moved.

syntax: mode:= numeric_expression
xpos:= numeric_expression
ypos:= numeric_expression

WMON mode [, xpos, ypos]
WTV mode [, xpos, ypos]

example: i. WMON 4,50 {reset windows to standard monitor layout displaced 50 pixels
 to the right and 50 pixels down}

ii. WMON ,80,40 {reset windows to standard monitor layout displaced 80 pixels
 to the right and 40 pixels down, preserving the contents}

136 04/23

WM_MOVEALPHA window manager
WM_MOVEALPHA will set the amount of transparency a managed window should have when
moved around the screen. Values from 1 (nearly transparent) to 255 (totally opaque) are used.
A value of 0 is allowed, but this would make the window completely transparent and you could
only see the background, so a value of 255 will actually be used.

syntax: WM_MOVEALPHA numeric_expression {in the range 0 to 255}

example: i. WM_MOVEALPHA 1 {window move is almost completely transparent}
ii. WM_MOVEALPHA 128 {window move is half way between transparent and

 opaque}
iii. WM_MOVEALPHA 255 {window move is opaque}

WM_MOVEMODE window manager
WM_MOVEMODE will change the way that managed windows may be moved around the
screen.

There are four ways for a window to be moved-

0 The original method. The pointer changes to the ‘move window’ sprite which is
moved around the screen.

1 The Outline method. Click on the move icon with the mouse, keep holding the
button down. An outline of the window appears, which you can move around and
position to where you want it. Then release the mouse button.

2 The Full Window mode. This is the same as 1 above, but instead of an outline,
the entire window is moved.

3 The Full window with transparency is the same as 2 above, but the window to be
moved is made transparent. This is done via "alpha blending".
This type of move is only implemented for display modes where alpha blending
actually makes sense, i.e. modes 16, and 32. In other display modes, such as the
QL screen modes, it will be redirected to move mode 2.

WM_MOVEMODE will effect all programs running on the system except those which do not use
the Window Manager.

syntax: mode:= 0 | 1 | 2 | 3

WM_MOVEMODE mode

example: WM_MOVEMODE 1 {set the ‘Outline’ mode}

comment: You cannot use this move mode with anything but the mouse – the keyboard (cursor
keys) will not work.

04/23 137

YEAR%, MONTH%
DAY%, WEEKDAY% date conversions
These functions complement the DATE and DATE$ functions, by providing extensions to return
the year, month, day and weekday numbers corresponding to the current system date. Or an
optional date as supplied in the standard QL format of the number of seconds since the 1st

January 1961.

WEEKDAY% returns the day number of the week (0…6 Sunday…Saturday).

syntax: date:= | numeric_expression {number of seconds since 1st January 1961}
 | yyyy,m,d,h,m,s

YEAR%[(date)] {returns 1961 to 2097}
MONTH%[(date)] {returns 1 to 12}
DAY%[(date)] {returns 1 to 31}
WEEKDAY%[(date)] {returns 0 to 6}

example: i. PRINT YEAR% {returns current year}
ii. m%=MONTH%(1234567) {returns 1}
iii. today=DAY%(2002,7,23,10,32,15) {returns 23}
iv. PRINT WEEKDAY% {returns current day}

comment: YEAR% and YEAR%(DATE) are functionally identical.

138 04/23

A
ABS...3
Absolute values...3
ACOS..3
ACOT..3
ADATE...3
AJOB...3
ALARM..4
ALCHP..4
ALPHA_BLEND..4
ALTKEY...4
ARC...5
ARC_R..5
Arccosine...3
Arccotangent...3
Arcsine..3
Arctangent...3
Arrays..

DIM...36
DIMN...36

ASIN..3
Assignment..79
AT..5
ATAN..3
Audio CD player...

CD_ALLTIME..13
CD_CLOSE...13
CD_EJECT..13
CD_FIRSTTRACK.....................................13
CD_HOUR..14
CD_HSG2RED..14
CD_INIT..14
CD_ISCLOSED...14
CD_ISINSERTED.......................................14
CD_ISPAUSED...14
CD_ISPLAYING...14
CD_LASTTRACK......................................13
CD_LENGTH..15
CD_MINUTE..14
CD_PLAY...15
CD_RED2HSG..14
CD_RESUME...15
CD_SECOND..14
CD_STOP..15
CD_TRACK..15
CD_TRACKLENGTH................................15
CD_TRACKSTART...................................16
CD_TRACKTIME......................................16

AUTO..6
AY_CHIPS..6
AY_TYPE...6
AY-3..

AY_CHIPS..6
AY_TYPE...6
BELL...9
ENVELOPE...44
EXPLODE...9
HOLD..60
LIST_AY...81
PEEK_AY...97
PLAY...98
PLAYING..98

POKE_AY...101
RELEASE..110
SHOOT..9
SOUND_AY..123

B
BAUD..7
Baudrates...7
BEEP...8
BEEPING..8
BELL...9
BGCOLOUR_24...9
BGCOLOUR_QL..9
BGET..10
BGIMAGE..11
BIN..11
BIN$..11
BLOCK...11
BORDER...12
BPUT...10

C
CACHE_OFF..12
CACHE_ON..12
CALL..13
CD_ALLTIME..13
CD_CLOSE...13
CD_EJECT..13
CD_FIRSTTRACK...13
CD_HOUR..14
CD_HSG2RED...14
CD_INIT...14
CD_ISCLOSED..14
CD_ISINSERTED..14
CD_ISPAUSED..14
CD_ISPLAYING..14
CD_LASTTRACK..13
CD_LENGTH...15
CD_MINUTE..14
CD_PLAY...15
CD_RED2HSG...14
CD_RESUME...15
CD_SECOND...14
CD_STOP..15
CD_TRACK..15
CD_TRACKLENGTH......................................15
CD_TRACKSTART...16
CD_TRACKTIME..16
CDEC$..49
Channel..

CLOSE...20
CHAR_DEF..16
CHAR_INC...17
CHAR_USE..17
Character...

CODE..20
size...25

CHK_HEAP..17
CHR$...18
CIRCLE...18
CIRCLE_R..18

04/23 139

CKEYOFF...18
CKEYON..18
CLCHP..19
CLEAR..19

SBASIC...19
screen...20
window..20

CLOCK...19
ADATE..3
DATE...29
DATE$...29
DAY%...138
DAY$...29
MONTH%...138
SDATE..118
WEEKDAY%..138
YEAR%...138

CLOSE..20
Closing..

channels...20
CLS..20
CODE..20
Colour..

INK..71
MODE...85
PAPER...91
RECOL..109
recolour..109

COLOUR_24..21
COLOUR_NATIVE..21
COLOUR_PAL...21
COLOUR_QL...21
Comments..110
Communications..

baud rates...7
networks...86

Conditions...
IF..69
SELect...118

CONTINUE..21
COPY..22
COPY_H...22
COPY_N...22
COPY_O...22
COS...24
cosine...24
COT...24
cotangent...24
CSIZE..25
CURDIS..25
CURSEN...25
CURSOR...26
CURSPRLOAD..26
CURSPROFF..26
CURSPRON..26

D
DATA..27

structures..36
DATA_USE..28
DATAD$...28
DATE..29
DATE$..29

DAY%...138
DAY$..29
DDOWN..30
DEFine..

FuNction..31
PROCedure..32

DEG...33
Degrees..33
DEL_DEFB...33
Delay...95
DELETE..33

files..33
lines..39

DEST_USE...34
DESTD$..28
DEV_LIST..34
DEV_NEXT..35
DEV_USE...35
DEV_USE$...34
DEV_USEN..35
DEvices...

CLOSE...20
directory...37
FOP_DIR...54
FOP_IN..54
FOP_NEW...54
FOP_OVER...54
FOPEN...54
LBYTES..79
LOAD..82
load and run...83
LRUN..83
MERGE...84
merge and run..86
MRUN...86
NET...86
network station..86
OPEN...88
open for input...88
open new..88
OPEN_DIR..88
OPEN_IN...88
OPEN_NEW..88
OPEN_OVER..88
RUN...114
SAVE...114
SBYTES..116

DEVTYPE...34
DIM...36
Dimension arrays...36
DIMN..36
DIR..37
Directory..37
Directory devices...

COPY...22
copying..22
DELETE..33
deleting files..33
FORMAT...56
LOAD..82
loading SBASIC programs..........................82
SAVE...114
saving SBASIC programs..........................114

DISP_BLANK..37
DISP_COLOUR..37

140 04/23

DISP_INVERSE...38
DISP_RATE..38
DISP_SIZE..38
DISP_TYPE..38
Display directory...37
DIV..38
DLINE...39
DLIST..39
DMEDIUM_DENSITY....................................40
DMEDIUM_DRIVE$.......................................40
DMEDIUM_FORMAT.....................................40
DMEDIUM_FREE..40
DMEDIUM_NAME$..40
DMEDIUM_RDONLY.....................................40
DMEDIUM_REMOVE....................................40
DMEDIUM_TOTAL..40
DMEDIUM_TYPE...40
DNEXT...30
DO...41
Documentation..110
DOS_DRIVE...41
DOS_DRIVE$...41
DOS_USE...42
Dots...99
DUP...30

E
ED..42
EDIT..42
ELLIPSE...18
ELLIPSE_R...18
ELSE...69
END...

DEFine...31, 32
FOR...55
IF..69
REPeat...111
SELect...118
WHEN...133

ENVELOPE..44
EOF...44
EOFW..44
EPROM_LOAD..45
Equals..79
ERLIN...45
ERNUM..45
Errors...

CONTINUE...21
RETRY..21

ERT...45
ET..46
EW...46
EX..46
EX_M..46
EXEC..46
EXEC_W...46
EXEP...48
EXF...50
EXIT..48

with FOR...48
with REPeat...48

EXP...49
EXPLODE...9

Exponentiation..49
EXT...87
EXTRAS...49

F
FBKDT..52
FDAT..52
FDEC$...49
FEP..50
FET..50
FEW..50
FEX...50
FEX_M..50
FEXP$...50
Files...

COPY...22
COPY_H..22
COPY_N..22
COPY_O..22
DELETE..33
DIR..37
directory...37
FOP_DIR...54
FOP_IN..54
FOP_NEW...54
FOP_OVER...54
FOPEN...54
LBYTES..79
LOAD..82
load and run...83
LRUN..83
MERGE...84
merge and run..86
MRUN...86
OPEN...88
open for input...88
open new..88
OPEN_DIR..88
OPEN_IN...88
OPEN_NEW..88
OPEN_OVER..88
PRINT..101
RUN...114
SAVE...114

FILL..51
FILL$..51
FLASH..51
FLEN...52
FLP_DENSITY...52
FLP_DRIVE..53
FLP_DRIVE$..53
FLP_SEC...53
FLP_START...53
FLP_STEP...53
FLP_TRACK..53
FLP_USE..54
FLUSH..54
FMAKE_DIR..84
FN..31
FNAME$...52
FOP_DIR...54
FOP_IN...54
FOP_NEW..54

04/23 141

FOP_OVER...54
FOPEN..54
FOR...55

with EXIT..55
with NEXT..55

FORMAT..56
FPOS...57
FREE_MEM..57
FSEND_EVENT...119
FTEST...57
FTYP...52
FuNction..31

DEFine...31
RETurn..31

FUPDT..52
FVERS..52
FXTRA..52

G
GET...58
GOSUB...58
GOTO..59
Graphics..

ARC...5
ARC_R..5
CIRCLE...18
CIRCLE_R..18
ELLIPSE..18
ELLIPSE_R...18
FILL...51
fill shape..51
LINE..80
LINE_R...80
POINT...99
POINT_R...99
Turtle...

FILL...51
MOVE..85
PENDOWN..97
PENUP...97
SCALE...116
TURN...131
TURNTO...131

H
HEX...59
HEX$...59
HGET..59
Highlighting..128
HOLD..60
HOME_CSET...60
HOME_CUR$...60
HOME_DEF..60
HOME_DIR$..60
HOME_FILE$...60
HOME_SET..60
HOME_VER$...60
HOT_CHP...62
HOT_CHP1...62
HOT_CMD..63
HOT_DO...63
HOT_GETSTUFF$...64

HOT_GO...64
HOT_KEY..64
HOT_LIST..65
HOT_LOAD..65
HOT_LOAD1..65
HOT_NAME$...66
HOT_OFF...66
HOT_PICK..66
HOT_REMV...67
HOT_RES...62
HOT_RES1...62
HOT_SET..66
HOT_STOP...64
HOT_STUFF...67
HOT_THING..68
HOT_THING1..68
HOT_TYPE...68
HOT_WAKE...69
HPUT..59

I
I/O..

INKEY$...71
keyboard input...76
KEYROW..76
printing...101, 102

IDEC$..49
IF...69

nesting..70
INK..71
INKEY$..71
INPUT...72
INSTR...72
INSTR_CASE...72
INT..73
Integer divide...38
IO_PRIORITY..73

J
Job control...

AJOB...3
JOB$..74
JOBID..73
JOBS..74
NXJOB..74
OJOB...74
PJOB..74
RJOB...113
SPJOB..124
SUSJB..128

JOB_NAME..75
JOB$..74
JOBID..73
JOBS..74
Jump..59

K
KBD_TABLE..75
Keyboard input..71, 76
KEYROW...76

142 04/23

L
LANG_USE..78
LANGUAGE...77
LANGUAGE$...77
LBYTES..79
LEN...79
Length of strings..79
LET..79
LGET...10
LINE..80

delete..39
DLINE...39
editor..42
numbering..6
RENUM...111
renumbering...111

LINE_R...80
LIST..80
LIST_AY...81
LN..82
LOAD..82
Load and run..83
LOCal..82
Local variables..82

in functions..31
in procedures..32

LOG10...82
Logarithm..82
Loop epilogue..55
Loop repetition..

EXIT..48
EXT...87
FOR...55
NEXT...87
REPeat...111

LPUT...10
LRESPR..83
LRUN..83

M
MACHINE..83
Machine code..13

CALL...13
ET..46
EW...46
EX..46
EX_M..46
EXEC...46
EXEC_W...46
EXF..50
FEP..50
FET..50
FEW...50
FEX..50
FEX_M..50
loading...46
RESPR...112
saving...122
SEXEC...122
SEXEC_O..122

MAKE_DIR..84
Maths functions...

ABS...3
absolute value..3
ACOS...3
ACOT..3
arc cosine...3
arc cotangent..3
arc sine...3
arc tangent..3
ASIN..3
ATAN..3
common logarithm.......................................82
COS...24
cosine...24
COT...24
cotangent..24
EXP..49
exponentiation...49
INT...73
integer part...73
LN..82
LOG10...82
natural logarithm..82
RAD...108
radians conversion.....................................108
SIN...123
sine...123
SQRT...127
square root...127
TAN...129
tangent...129

MERGE...84
Merge and run...86
MOD..84
MODE...85
modulus...84
MONTH%...138
MOUSE_SPEED...85
MOUSE_STUFF...85
MOVE...85
MRUN...86
Multitasking..

PAUSE...95
SEXEC...122
SEXEC_O..122

N
NET...86
Networks...86
NEW..86
NEXT..87

with FOR...55
with REPeat...111

NXJOB..74

O
OJOB...74
ON...GOSUB...87
ON...GOTO...87
OPEN..88

channel...88
serial port...88
window..88

04/23 143

Open existing file..88
Open new file..88
OPEN_DIR..88
OPEN_IN..88
OPEN_NEW...88
OPEN_OVER..88
Operators...

INSTR..72
MOD..84

OUTLN...88
OVER..89
Overprinting..89

P
PALETTE_8..90
PALETTE_QL..90
Palettes..

COLOUR_PAL...21
Palettes, Job...

SP_JOBOWNPAL.....................................126
SP_JOBPAL..126

Palettes, System...
SP_GET...125
SP_GETCOUNT.......................................126
SP_RESET...126
SP_SET..127

PAN...91
PAPER..91
PAR_ABORT..93
PAR_BUFF...93
PAR_CLEAR..93
PAR_DEFAULTPRINTER$............................93
PAR_GETFILTER..93
PAR_GETPRINTER$.......................................94
PAR_PRINTERCOUNT...................................94
PAR_PRINTERNAME$...................................94
PAR_PULSE...94
PAR_SETFILTER..94
PAR_SETPRINTER...95
PAR_USE..95
PAR_WAIT...95
Parameters...31, 32
PARNAM$..92
PARSTR$..92
PARTYP..92
PARUSE..92
PAUSE..95
PE_BGOFF...95
PE_BGON...95
PEEK...96
PEEK_AY...97
PEEK_F...96
PEEK_L..96
PEEK_W...96
PEEK$...97
PEEKS...97
PEEKS_F..97
PEEKS_L..97
PEEKS_W...97
PEEKS$...97
PENDOWN...97
PENUP..97
PI...97

PJOB..74
PLAY..98
PLAYING...98
Plotting points...99
POINT...99
POINT_R..99
POKE..99
POKE_AY...101
POKE_F..99
POKE_L..99
POKE_W...99
POKE$..100
POKES..100
POKES_F..100
POKES_L..100
POKES_W..100
POKES$..100
PRINT...101

OVER..89
UNDER...131

PRINT_USING...102
Printout..101
PRocedures..

DEFine...31
LOCal..82
RETurn..113

PROCESSOR..103
PROG_USE...103
PROGD$...28
Programmable sound generator.............................

AY_CHIPS..6
AY_TYPE...6
BELL...9
ENVELOPE...44
EXPLODE...9
HOLD..60
LIST_AY...81
PEEK_AY...97
PLAY...98
PLAYING..98
POKE_AY...101
RELEASE..110
SHOOT..9
SOUND_AY..123

Programs..
CONTINUE...21
RETRY..21
RUN...114
SAVE...114

PROT_DATE..104
PROT_MEM...104
PRT_ABORT..104
PRT_BUFF..104
PRT_CLEAR..104
PRT_USE..105
PRT_USE$..105
PUT...58

Q
QLOAD...82
QLRUN...83
QMERGE..84
QMRUN..86

144 04/23

QPC_CMDLINE$...105
QPC_EXEC...105
QPC_EXIT..105
QPC_FLASHBUTTON..................................106
QPC_HASFOCUS..106
QPC_HOSTOS..106
QPC_MAXIMIZE...106
QPC_MINIMIZE..106
QPC_MSPEED...106
QPC_NETNAME$..106
QPC_QLSCREMU...107
QPC_RESTORE...106
QPC_SYNCSCRAP..107
QPC_VER$...107
QPC_WINDOWSIZE.....................................108
QPC_WINDOWTITLE..................................108
QSAVE..114
QSAVE_O...114
QUIT...108

R
RAD..108
RAM_USE..109
Random numbers...109
RANDOMISE...109
READ..27
RECHP..4
RECOL..109
RELEASE...110
REMark...110
RENAME..110
RENUM..111
Renumber lines..111
REPeat...111

EXIT..48
NEXT...87

REPetition...
FOR...55
NEXT...87

REPORT..112
RESET...112
Reset clock..3, 118
Resolution..85
RESPR...112
RESTORE...27
RETRY..21
RETurn..113

with FuNction..31
with PROCedure..32

RJOB...113
RND..114
RS-232-C...7
RUN..114

load and run...83
LRUN..83

S
SAVE..114
SAVE_O..114

machine code...116
programs..114

SBASIC...115

SBYTES..116
SBYTES_O...116
SCALE..116
SCR_BASE...117
SCR_LLEN...117
SCR_XLIM...117
SCR- YLIM...117
Screen..

BLOCK..11
BORDER...12
character size...25
clear...20
FLASH...51
INK..71
MODE...85
output...101
OVER..89
overprinting...89
PAN...91
PAPER...91
PRINT..101
RECOL..109
recolouring...109
SCROLL..117
STRIP..128
UNDER...131
underlining...131
WINDOW..134

SCROLL..117
SDATE..118
SELect...118
SEND_EVENT...119
SER_ ABORT...120
SER_BUFF..119
SER_CDEOF..120
SER_CLEAR..120
SER_FLOW..120
SER_GETPORT$..120
SER_PAUSE...121
SER_ROOM..121
SER_SETPORT..121
SER_USE..121
SET_FBKDT...122
SET_FUPDT...122
SET_FVERS...122
Setting clock..118
Setting station number.......................................86
SEXEC..122
SEXEC_O...122
Shapes..

ARC...5
CIRCLE...18
ELLIPSE..18
FILL...51
LINE..80

SHOOT..9
SIN..123
Sine..123
Size of characters..25
SLUG..123
Sound...

AY_CHIPS..6
AY_TYPE...6
BEEP...8
BEEPING..8

04/23 145

BELL...9
ENVELOPE...44
EXPLODE...9
HOLD..60
LIST_AY...81
PEEK_AY...97
PLAY...98
PLAYING..98
POKE_AY...101
RELEASE..110
SHOOT..9
SOUND_AY..123

SOUND_AY...123
SP_GET...125
SP_GETCOUNT...126
SP_JOBOWNPAL..126
SP_JOBPAL..126
SP_RESET..126
SP_SET...127
SPJOB...124
SPL..124
SPL_USE..125
SPLF..124
SQRT...127
Square root..127
Starting programs......................................83, 114
STAT...127
Station number..86
STOP...128
Strings..

CHR$...18
FILL$...51
INSTR..72
LEN...79
length...79

STRIP..128
Subroutines..31, 32
SUSJB...128
SYSSPRLOAD...129

T
TAN...129
Tangent..129
TH_FIX...129
THEN..69
Time..

ALARM...4
clock adjust..3
clock reset..118
date...29
PAUSE...95
PROT_DATE..104

TK2_EXT..129
TRA...130
TRUNCATE..130
TURN..131
TURNTO...131
Turtle graphics...

FILL...51
MOVE...85
PENDOWN...97
PENUP...97
TURN..131

TURNTO...131

U
Unconditional jump...59
UNDER...131
Underlining..131
UPUT..10

V
Value absolutes...3
VER$...131
VIEW..132

W
WAIT_EVENT...132
WCOPY..22
WDEL...33
WDIR..133
WEEKDAY%...138
WGET...10
WHEN ERROR...133
WIDTH..134
WIN_DRIVE...134
WIN_DRIVE$...134
WIN_FORMAT..135
WIN_REMV...135
WIN_SLUG..135
WIN_START..135
WIN_STOP...135
WIN_USE...135
WIN_WP...136
WINDOW...134
Windows..

AT..5
BLOCK..11
Character size..25
clear...20
CSIZE..25
cursor control...5, 26
FILL...51
FLASH...51
INK..71
MODE...85
OVER..89
overprinting...89
PAN...91
PAPER...91
print position..5
SCROLL..117
STRIP..128
UNDER...131
underlining...131

WM_BLOCK..11
WM_BORDER...12
WM_INK..71
WM_MOVEALPHA......................................137
WM_MOVEMODE..137
WM_PAPER...91
WM_STRIP...128
WMON..136
WPUT..10

146 04/23

WREN...110
WSTAT...133
WTV..136

Y
YEAR%...138

04/23 147

	CD_CLOSE
	CD_FIRSTTRACK
	CD_HSG2RED
	CD_ISPLAYING, CD_ISCLOSED
	CD_TRACKSTART audio CD player

	DEV_LIST, DEV_USE$ devices
	DEV_USE directory devices
	FUPDT, FBKDT, FVERS file information
	FLP_DENSITY directory devices
	MACHINE SMSQ/E
	MOUSE_SPEED
	MOUSE_STUFF
	PAR_PRINTERCOUNT devices
	PAR_SETFILTER devices

	QPC_MINIMIZE
	QPC_RESTORE QPC

	syntax: QPC_MAXIMIZE
	QPC_MINIMIZE
	SER_GETPORT$ devices

	SET_FUPDT
	SLUG
	WIN_DRIVE
	WIN_DRIVE$
	WIN_FORMAT
	WIN_REMV

